HYDRAULIC FILTRATION PRODUCTS

STAINLESS STEEL HIGH PRESSURE FILTERS

PASSION TO PERFORM

A WORLDWIDE LEADER IN THE FIELD OF HYDRAULIC FILTRATION EQUIPMENT.

Our company started life in 1964, when Bruno Pasotto decided to attempt to cater for the requests of a market still to be fully explored, with the study, design, development, production and marketing of a vast range of filters for hydraulic equipment, capable of satisfying the needs of manufacturers in all sectors. The quality of our products, our extreme competitiveness compared with major international producers and our constant activities of research, design and development has made us a worldwide leader in the field of hydraulic circuit filtering. Present for over 50 years in the market, we have played a truly decisive role in defining our sector, and by now we are a group capable of controlling our entire chain of production, monitoring all manufacturing processes to guarantee superior quality standards and to provide concrete solutions for the rapidly evolving needs of customers and the market.

WORLDWIDE PRESENCE

Our foreign Branches enable us to offer a diversified range of products that allow us to successfully face the aggressive challenge of international competition, and also to maintain a stable presence at a local level.

The Group boasts **8** business branches

TECHNOLOGY

Our constant quest for excellence in quality and technological innovation allows us to offer only the best solutions and services for applications in many fields, including general industry, test rigs, lubrication, heavy engineering, renewable energies, naval engineering, offshore engineering, aviation systems, emerging technologies and mobile plant (i.e. tractors, excavators, concrete pumps, platforms).

AND PRODUCTION

Our high level of technological expertise means we can rely entirely on our own resources, without resorting to external providers. This in turn enables us to satisfy a growing number of customer requests, also exploiting our constantly updated range of machines and equipment, featuring fully-automated workstations capable of 24-hour production.

SUCTION **FILTERS**

Flow rates up to 875 l/min

Mounting:

- Tank immersed
- In-Line
- In tank with shut off valve
- In tank with flooded suction

RETURN FILTERS

Flow rates up to 3000 l/min

Pressure

up to 20 bar

Mounting:

- In-Line
- Tank top
- In single and duplex designs

RETURN / SUCTION **FILTERS**

Flow rates up to 300 l/min

Pressure

Mounting:

- In-Line

up to 80 bar

- Tank top

SPIN-ON **FILTERS**

Flow rates up to 365 l/min

Pressure up to 35 bar

Mounting:

- In-Line
- Tank top

LOW & MEDIUM PRESSURE **FILTERS**

Flow rates up to 3000 I/min

Pressure up to 80 bar

Mounting:

- In-Line
- Parallel manifold version
- In single and duplex designs

HIGH **PRESSURE FILTERS**

Flow rates up to 750 l/min

Pressure from 110 bar up to 560 bar

Mounting:

- In-Line
- Manifold
- In single
- and duplex designs

PRODUCT RANGE

MP Filtri can offer a vast and articulated range of products for the global market, suitable for all industrial sectors using hydraulic equipment.

This includes filters (suction, return, return/suction, spin-on, pressure, stainless steel pressure) and structural components (motor/pump bell-housings, transmission couplings, damping rings, foot brackets, aluminium tanks, cleaning covers).

We can provide all the skills and solutions required by the modern hydraulics industry to monitor contamination levels and other fluid conditions.

Mobile filtration units and a full range of accessories allow us to supply everything necessary for a complete service in the hydraulic circuits.

STAINLESS STEEL HIGH PRESSURE FILTERS

Flow rates up to 125 l/min

Pressure from 320 bar up to 1000 bar

Mounting:

- In-Line
- Manifold
- In single and duplex designs

CONTAMINATION MONITORING PRODUCTS

- Online, in-line particle counters
- Off-line bottle sampling products
- Fully calibrated using relevant ISO standards
- A wide range of variants to support fluid types and communication protocols

MOBILE FILTRATION UNITS

Flow rates from 15 l/min up to 200 l/min

POWER TRANSMISSION PRODUCTS

- Aluminium bell-housings for motors
 from 0.12 kW to 400 kW
- Couplings in Aluminium Cast Iron - Steel
- Damping rings
- Foot bracket
- Aluminium tanks
- Cleaning covers

TANK ACCESSORIES

- Oil filler and air breather plugs
- Optical and electrical level gauges
- Pressure gauge valve selectors
- Pipe fixing brackets
- Pressure gauges

HYDRAULIC FILTRATION PRODUCTS

1) p	page INTRODUCTION
1	COMPANY
6	PRODUCT RANGE
11	CONTAMINATION MANAGEMENT
22	FILTER SIZING
24	CORRECTIVE FACTOR

up to Q_{max}

28	page	SUCTION FILTERS	I/min	gpm
31	STR & MPA - MPM	Submerged suction filter, with bypass or magnetic filter	1000	264
39	SF2 250 - 350	Semi-submerged positive head suction filter, low flow rate	160	42
47	SF2 500	Semi-submerged positive head suction filter, high flow rate	700	185
57	CLOGGING INDICATORS			

			up 1	to P _{max}	up to	Q _{max}
(60) F	page	RETURN FILTERS		psi	l/min	gpm
63	MPFX	Tank top semi-immersed filter, standard filter element disassembly	8	116	900	238
91	MPLX	Tank top semi-immersed filter, standard filter element disassembly	10	145	1800	476
99	MPTX	Tank top semi-immersed filter, easy filter element disassembly	8	116	300	79
117	MFBX	Bowl assembly	8	116	700	185
125	MPF	Tank top semi-immersed filter, standard filter element disassembly	8	116	900	238
153	MPT	Tank top semi-immersed filter, easy filter element disassembly	8	116	300	79
171	MFB	Bowl assembly	8	116	700	185
179	MPH	Tank top semi-immersed filter, standard filter element disassembly	10	145	3500	925
203	MPI	Tank top semi-immersed filter, standard filter element disassembly	10	145	3500	925
215	FRI	Tank top semi-immersed filter, easy filter element disassembly, it can be used also as in-line filter	20	290	2500	660
231	RF2	Semi-immersed under-head filter, easy filter element disassembly	20	290	615	162
238	CLOGGING INDICATORS					
248	ACCESSORIES					

			up 1	O P _{max}	up to Q _{max}	
(250) F	page	RETURN / SUCTION FILTERS	bar	psi	l/min	gpm
253	MRSX	Unique TANK TOP filter for mobile machinery, with combined filtration on return and suction to the inlet at the hydrostatic transmissions in closed circuit	10	145	250	66
265	LMP 124 MULTIPORT	Unique IN-LINE filter for mobile machinery, with combined filtration on return and suction to the inlet at the hydrostatic transmissions in closed circuit	80	1160	120	32
273	CLOGGING INDICATORS					

			up t	:o P _{max}	up to	Q _{max}
286	age	SPIN-ON FILTERS	bar	psi	l/min	gpm
289	MPS	Low pressure filter, available with single cartridge (CS) for in-line or flange mounting or with two cartridge on the same axis on the opposite sides	12	174	365	96
305	MSH	In-line low and medium pressure filter available with single cartridge (CH)	35	508	195	52
311	CLOGGING INDICATORS					

			up 1	to P _{max}	up to	Q _{max}
(322) F	page	LOW & MEDIUM PRESSURE FILTERS	bar	psi	I/min	gpm
325	LMP 110 - 120 - 123 MULTIPORT	In-line filter with Multiport design for multiple choice connection	80	1160	175	46
341	LMP 210 - 211	In-line low & medium pressure filter, low flow rate	60	870	365	96
351	LMP 400 - 401 & 430 - 431	In-line low & medium pressure filter, high flow rate	60	870	780	206
363	LMP 950 - 951	In-line filter, available with 2 and up to 6 different heads	30	435	2400	634
371	LMP 952 - 953 - 954	In-line low pressure filter specifically designed to be mounted in series	25	363	4500	1189
383	LMD 211	In-line duplex medium pressure filter	60	870	200	53
391	LMD 400 - 401 & 431	In-line duplex low pressure filter	16	232	600	159
407	LMD 951	In-line duplex filter, available with 2 up to 6 different heads	16	232	1200	317
415		Filter elements designed according to DIN 24550				
417	LDP - LDD	In-line and duplex medium pressure filter	60	870	360	95
427	LMP 900 - 901	In-line low pressure filter	30	435	2000	528
435	LMP 902 - 903	In-line filter specifically designed to be mounted in series	20	290	3000	793
444	CLOGGING INDICATORS		·			
450	ACCESSORIES					

				up to P _{max}		Q _{max}
452 p	page	HIGH PRESSURE FILTERS	bar	psi	l/min	gpm
455	FMP 039	Filter high pressure, low flow rate applications	110	1595	80	21
463	FMP	Filter high pressure, high flow rate applications	320	4641	500	132
475	FHP	Typical high pressure filter for mobile applications, high flow rate	420	6092	630	166
493	FMM	Typical high pressure filter for mobile applications, low flow rate	420	6092	300	79
503	HPB	Pressure filter kits for integration in control manifolds	420	6092	300	79
513	FHA 051	Filter optimized for use in high pressure operating systems, low flow rate	560	8122	150	40
521	FHM	High pressure filter with intermediate manifold construction	320	4641	400	106
539	FHB	High pressure for block mounting	320	4641	485	128
553	FHF 325	In-line manifold top mounting	350	5076	550	145
563	FHD	In-line duplex high pressure filter	350	5076	250	66
576	CLOGGING INDICATORS					

			up 1	up to P _{max}		Q _{max}
584 page		STAINLESS STEEL HIGH PRESSURE FILTERS	bar	psi	I/min	gpm
587	FZP	In-line pressure filter with threaded mount	420	6092	160	42
597	FZH	In-line pressure filter with threaded mount for higher pressure	700	10153	80	21
607	FZX	In-line pressure filter with threaded mount up to 1000 bar	1000	14504	10	3
615	FZM	Manifold top mounting	320	4641	70	18
623	FZB	Manifold side mounting	320	4641	70	18
631	FZD	Duplex pressure filter for continuous operation requirements	350	5076	60	16
641	CLOGGING INDICATORS					

646 p	page	CLOGGING INDICATORS	
649	QUICK REFERENCE GUIDE		

THE CORRECT FILTER SIZING HAVE TO BE BASED ON THE TOTAL PRESSURE DROP DEPENDING BY THE APPLICATION.

FOR EXAMPLE, THE MAXIMUM TOTAL PRESSURE DROP ALLOWED BY A NEW AND CLEAN RETURN FILTER HAVE TO BE IN THE RANGE 0.4 - 0.6 bar / 5.80 - 8.70 psi.

The pressure drop calculation is performed by adding together the value of the housing with the value of the filter element. The pressure drop Δpc of the housing is proportional to the fluid density (kg/dm³/lb/ft³).

The filter element pressure drop Δpe is proportional to its viscosity (mm²/s / SUS), the corrective factor Y have to be used in case of an oil viscosity different than 30 mm²/s (cSt) / 150 SUS.

Sizing data for single filter element, head at top

 Δpc = Filter housing pressure drop [bar / psi]

 Δpe = Filter element pressure drop [bar / psi]

Y = Corrective factor Y (see correspondent table), depending on the filter type, on the filter element size, on the filter element length and on the filter media

Q = flow rate (l/min - gpm)

V1 reference oil viscosity = 30 mm²/s (cSt) /150 SUS

V2 = operating oil viscosity in mm²/s (cSt) / SUS

Filter element pressure drop calculation with an oil viscosity different than 30 mm²/s (cSt) / 150 SUS

International system:

 $\Delta pe = Y : 1000 \times Q \times (V2:V1)$

Imperial system:

 $\Delta pe = Y : 17.2 \times Q \times (V2:V1)$

 Δp Tot. = $\Delta pc + \Delta pe$

Verification formula

 Δp Tot. $\leq \Delta p$ max allowed

Maximum total pressure drop (Δp max) allowed by a new and clean filter

0.00			
Application Ra	nge:[bar]	[psi]	
Suction filters	0.08 - 0.10 bar	1.16 - 1.45 psi	
Return filters	0.4 - 0.6 bar	5.80 - 8.70 psi	
Return - Suction filter	s (*) 0.8 - 1.0 bar	11.60 - 14.50 p	si
	0.4 - 0.6 bar	5.80 - 8.70 psi	return lines
Low & Medium	0.3 - 0.5 bar	4.35 - 7.25 psi	lubrication lines
Pressure filters	0.3 - 0.4 bar	4.35 - 5.80 psi	off-line in power systems
1 1000dio ilitoro	0.1 - 0.3 bar	1.45 - 4.35 psi	off-line in test benches
	0.4 - 0.6 bar	5.80 - 8.7 psi	over-boost
High Pressure filters	0.8 - 1.5 bar	11.60 - 21.75 p	si
Stainless Steel filters	0.8 - 1.5 bar	11.60 - 21.75 p	si

(*) The suction flow rate should not exceed 30% of the return flow rate

Generic filter calculation example

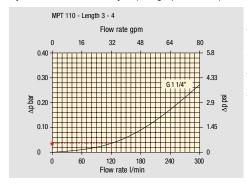
Application data:

Tank top return filter

Pressure Pmax = 10 bar

Flow rate Q = 120 I/min

Viscosity V2 = 46 mm²/s (cSt)


Oil density = 0.86 kg/dm^3

Required filtration efficiency = 25 μm with absolute filtration

With bypass valve and G 1 1/4" inlet connection

Calculation:

 $\Delta pc = 0.03 \text{ bar / } 0.43 \text{ psi (see graphic below)}$

Filter housings ∆p pressure drop. The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. ∆p varies proportionally with density.

 $\Delta pe = (2.00: 1000) \times 120 \times (46: 30) = 0.37 \text{ bar}$ $\Delta pe = (2.00: 17.2) \times 32 \times (216: 150) = 5.36 \text{ psi}$

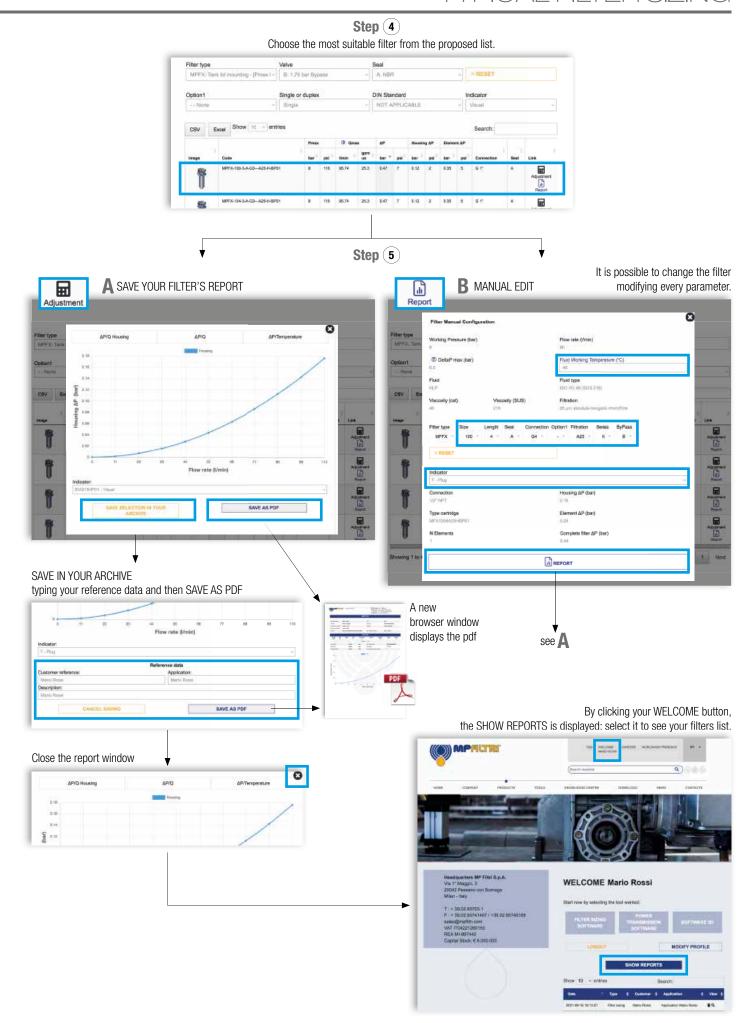
Filter element			Absolute filtration H Series				Nominal filtration N Series			
Туре		A03	A06	A10	A16	A25	P10	P25	M25 M60 M90	
Return filte	rs									
		74.00	50.08	20.00	16.00	9.00	6.43	5.51	4.40	
MF 020	2	29.20	24.12	8.00	7.22	5.00	3.33	2.85	2.00	
	3	22.00	19.00	6.56	5.33	4.33	1.68	1.44	1.30	
MF 030 MFX 030	1	74.00	50.08	20.00	16.00	9.00	6.43	5.51	3.40	
	1	28.20	24.40	8.67	8.17	6.88	4.62	3.96	1.25	
MF 100	2	17.33	12.50	6.86	5.70	4.00	3.05	2.47	1.10	
MFX 100	3	10.25	9.00	3.65	3.33	2.50	1.63	1.32	0.96	
	4	6.10	5.40	2.30	2.20	2.00	1.19	0.96	0.82	

 Δp Tot. = 0.03 + 0.37 = 0.4 bar Δp Tot. = 0.43 + 5.36 = 5.79 psi

The selection is correct because the total pressure drop value is inside the admissible range for top tank return filters.

In case the allowed max total pressure drop is not verified, it is necessary to repeat the calculation changing the filter length/size.

Corrective factor Y to be used for the filter element pressure drop calculation. The values depend to the filter size and length and to the filter media. Reference oil viscosity $30 \text{ mm}^2/\text{s}$


Stainless steel high pressure filters

Filter elemen			Abs	olute filtra N Series	tion	
Туре		A03	A06	A10	A16	A25
HP 011	1	332.71	250.07	184.32	152.36	128.36
	2	220.28	165.56	74.08	59.13	37.05
	3	123.24	92.68	41.48	33.08	20.72
	4	77.76	58.52	28.37	22.67	16.17
HP 039 2 3 4		70.66	53.20	25.77	20.57	14.67
		36.57	32.28	18.00	13.38	8.00
		26.57	23.27	12.46	8.80	5.58
HP 050	1	31.75	30.30	13.16	12.3	7.29
	2	24.25	21.26	11.70	9.09	4.90
	3	17.37	16.25	8.90	7.18	3.63
	4	12.12	10.75	6.10	5.75	3.08
	5	7.00	6.56	3.60	3.10	2.25
HP 135	1 2 3	20.33 11.14 6.48	18.80 10.16 6.33	9.71 6.60 3.38	8.66 6.38 3.16	4.78 2.22 2.14

Filter element				olute filtra H - U Series		
Туре		A03	A06	A10	A16	A25
IID 044	1 2	424.58 281.06	319.74 211.25	235.17 94.53	194.44 75.45	163.78 47.26
HP 011	3	130.14	97.50	43.63	34.82	21.81
	4	109.39	82.25	36.79	29.37	18.40
	2	73.00	57.00	28.00	24.00	17.20
HP 039	3	40.90	36.33	21.88	18.80	11.20
	4	31.50	28.22	17.22	9.30	6.70
	1	47.33	34.25	21.50	20.50	14.71
	2	29.10	25.95	14.04	10.90	5.88
HP 050	3	20.85	19.50	10.68	8.61	4.36
	4	14.55	12.90	7.32	6.90	3.69
	5	9.86	9.34	6.40	4.80	2.50
	1	29.16	25.33	13.00	12.47	5.92
HP 135	2	14.28	11.04	7.86	7.60	4.44
	3	8.96	7.46	4.89	4.16	3.07

TYPICAL FILTER SIZING Selection Software

Stainless steel high pressure filters are used as process filters to protect individual valves or the entire hydraulic circuit from contamination as per ISO 4406.

6 versions are available with operating pressures ranging from 320 bar up to 1000 bar.

A range of products is available to resolve all filter mounting problems, in the following configurations:

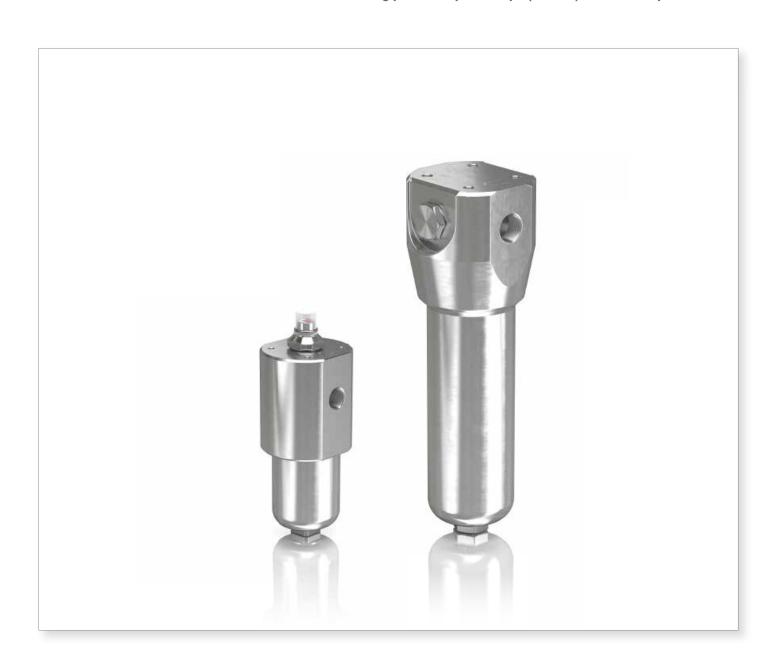
- FZP In-line pressure filter with threaded mount
- FZH In-line pressure filter with threaded mount for higher pressure
- FZX In-line pressure filter with threaded mount up to 1000 bar
- FZB Manifold side mounting
- FZM Manifold top mounting
- FZD Duplex pressure filter for continuous operation requirements

FZ stainless steel filters are specifically designed for applications in the:

- Process engineering
- Water hydraulics
- Offshore technology
- Marine technology
- High pressure hydraulics
- Any application in harsh or aggressive environment

For the proper corrective factor Y see chapter at page 25

Stainless steel high pressure filters


FZP	page	587
FZH		597
FZX		607
FZM		615
FZB		623
FZD		631
INDICATORS		641

FZP series

Maximum working pressure up to 42 Mpa (420 bar) - Flow rate up to 160 l/min

FZP GENERAL INFORMATION

Description

Technical data

Stainless steel high pressure filters

In-line

Maximum working pressure up to 42 Mpa (420 bar) Flow rate up to 160 l/min

FZP is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- -1 1/4" female threaded connections, for a maximum flow rate of 150 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- Bypass valve, to relieve excessive pressure drop across the filter media
- Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve
- High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-shore equipment
- Water filtration systems
- Systems with strong or corrosive environmental conditions
- Systems with corrosive fluids

Filter housing materials

- Head: AISI 316L
- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
- Optional FPM series V (-20 °C to +120 °C)
- Optional MFQ series F (-50 °C to +120 °C)

Bypass valve

Opening pressure 6 bar ±10%

Temperature

From -50 °C to +120 °C

Note

FZP filters are provided for vertical mounting

Δp element type

Fluid flow through the filter element from OUT to IN

Microfibre filter elements - series R: 20 bar.

Element series "R":

- End cap: Nylon
- Core tube: Tinned Steel
- External/Internal support: Wire mesh Epox painted
- Media/Support/Pre-filter: Microfibre/Syntetic

Microfibre filter elements - series S: 210 bar.

Element series "S":

- End cap: Tinned Steel
- Core tube: Tinned Steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

Element series "U":

- End cap: Stainless Steel
- Core tube: Stainless Steel
- External support: Stainless Steel
- Internal support: Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Weights [kg] and volumes [dm3]

Filter series	Weights [kg]						Volumes [dm³]			
	Length					Length				
FZP 039		-	4.5	5.1	5.6		-	0.19	0.26	0.34
FZP 136		8.3	10.2	11.5	-		0.45	0.78	1.00	-

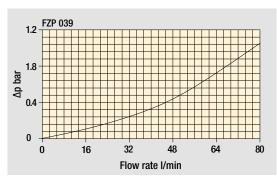
FILTER ASSEMBLY SIZING Flow rates [I/min]

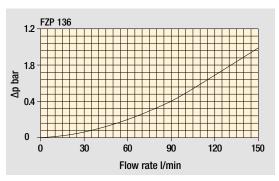
			Filter element design - R Series					Filter element design - S-U Series			
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25
	2	19	25	43	50	59	19	23	41	45	55
FZP 039	3	34	37	53	62	74	31	34	48	52	66
	4	42	46	63	72	81	38	41	55	71	78
	1	63	67	102	108	136	47	53	87	89	127
FZP 136	2	95	100	122	123	159	81	95	113	115	138
	3	122	124	148	150	160	106	116	135	141	151

Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

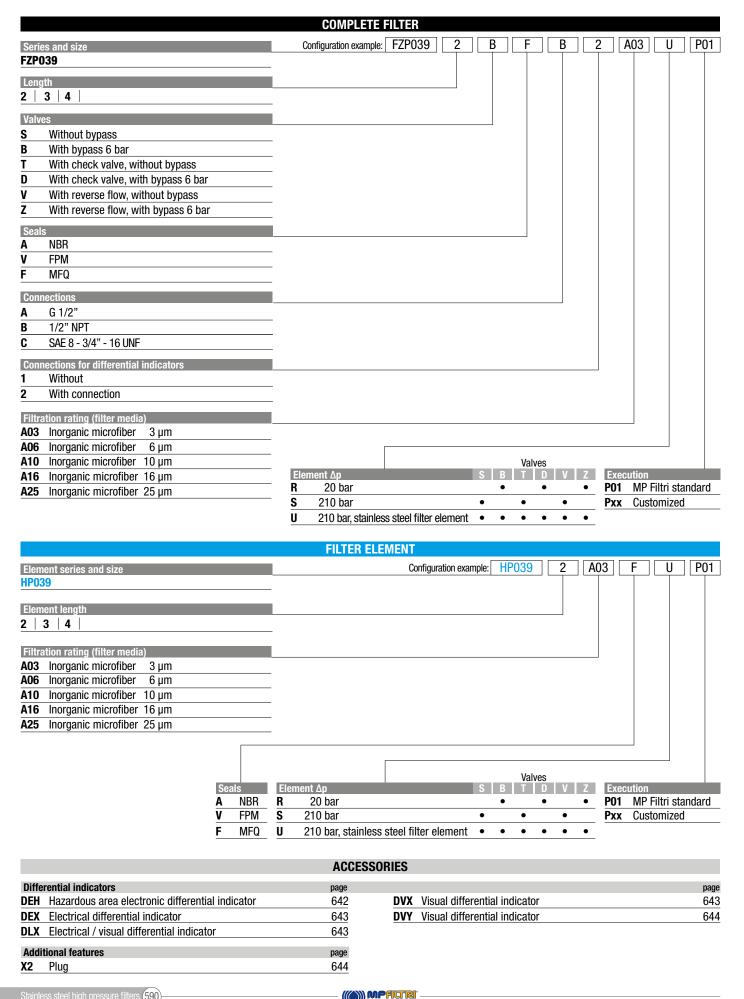

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

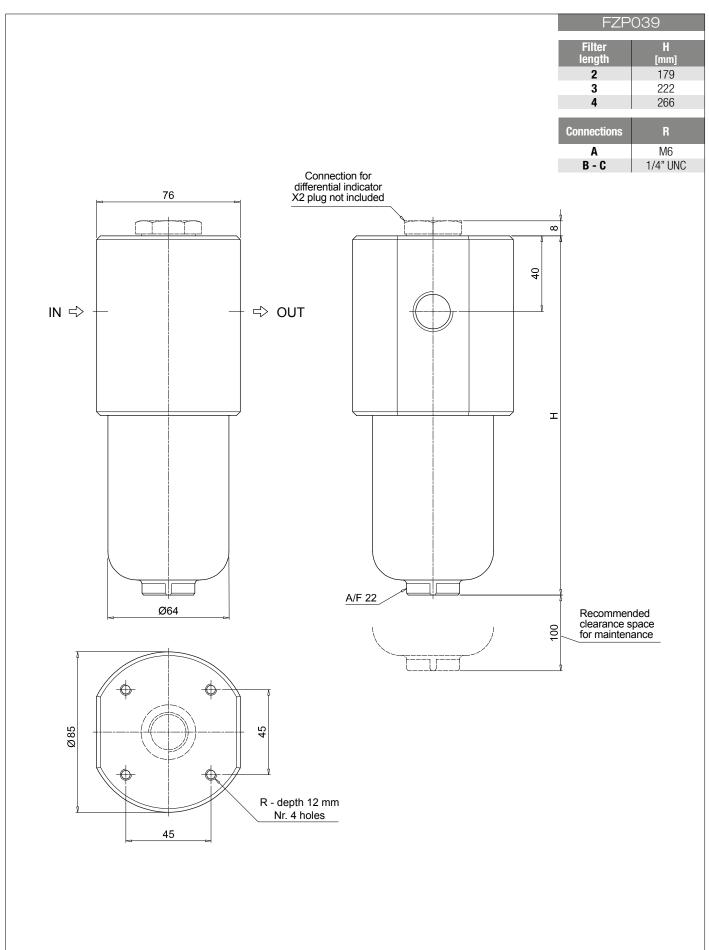

Hydraulic symbols

Filter series	Style S	Style B	Style T	Style D	Style V	Style Z
FZP 039	•	•	•	•	•	•
FZP 136	•	•				
	OUT TO THE PROPERTY OF THE PRO	OUT TO THE PROPERTY OF THE PRO	OUT TO THE PROPERTY OF THE PRO	OUT T	OUT TO THE PART OF	D.I.

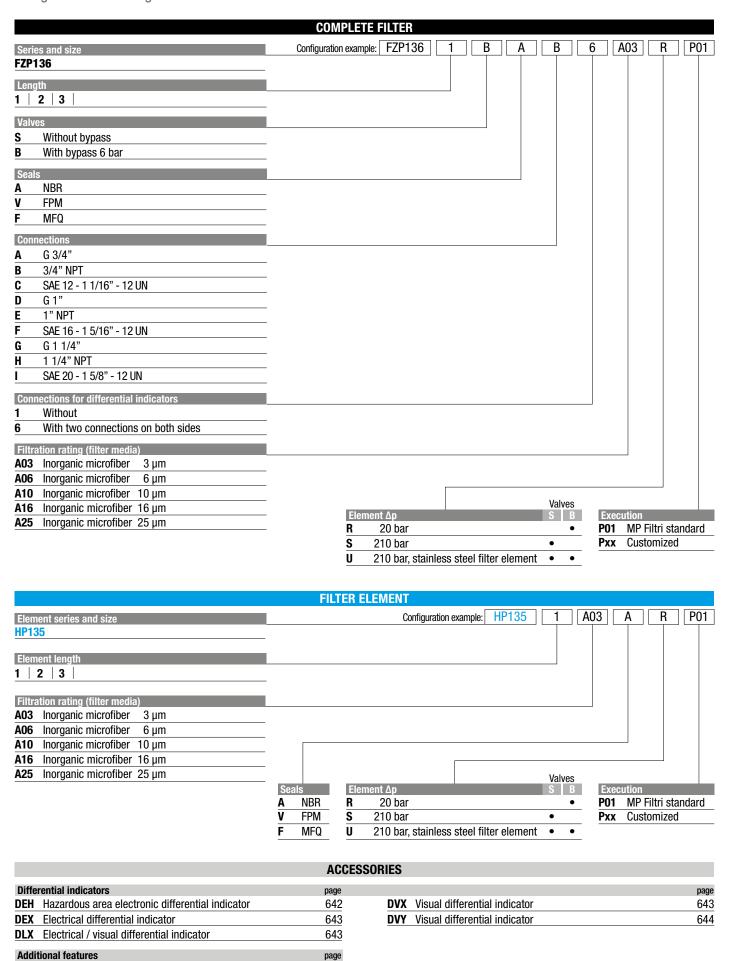
Pressure drop

Filter housings Δp pressure drop



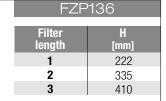

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

Designation & Ordering code

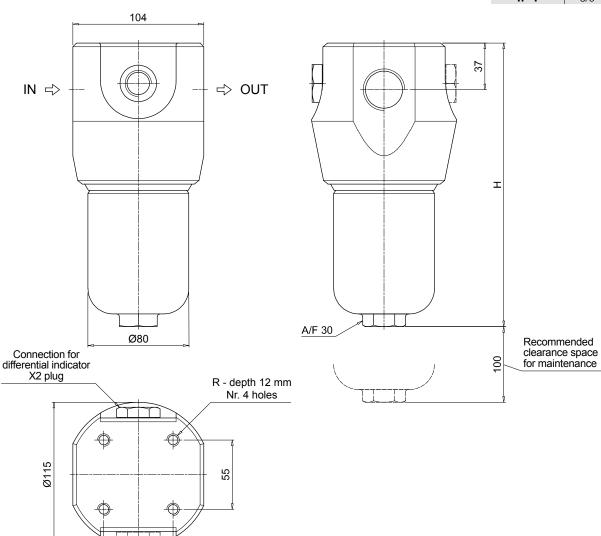


Dimensions

Designation & Ordering code



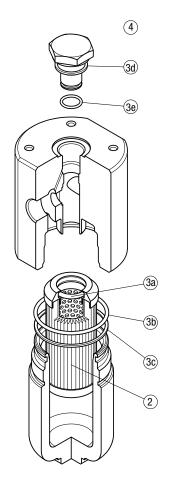
644

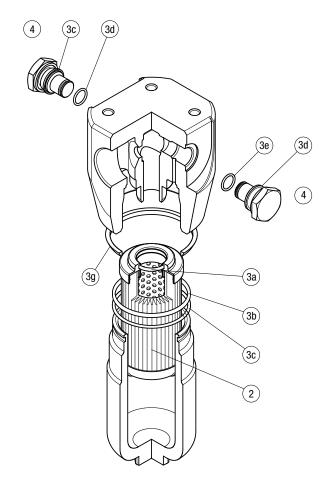

MPALTRI

Plug

Dimensions

Connections	R
Α	M10
B - C	3/8" UNC
D	M10
E-F	3/8" UNC
G	M10
H - I	3/8" UNC


The position of the X2 plug is reversible


55

Connection for differential indicator X2 plug not included

Order number for spare parts

	Q.ty: 1 pc.		1 pc.	Q.ty: 1 pc.		
Item:	2		3 (3a ÷ 3g)	4		
Filter	Filter	Seal Kit co	de number	Indicator connection plug		
series	element	NBR	FPM	NBR	FPM	
FZP 039	See order	02050299	02050300	X2H	X2V	
FZP 136	table	02050636	02050637	/\ZII		



FZH series

Maximum working pressure up to 70 Mpa (700 bar) - Flow rate up to 80 l/min

GENERAL INFORMATION

Description

Technical data

Stainless steel high pressure filters

Maximum working pressure up to 80 Mpa (700 bar) Flow rate up to 80 I/min

FZH is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- 1/2" female threaded connections, for a maximum flow rate of 50 I/min
- Fine filtration rating, to get a good cleanliness level into the system
- Bypass valve, to relieve excessive pressure drop across the filter media
- Low collapse filter element "N", for use with filters provided with bypass valve
- High collapse filter element "H", for use with filters not provided with bypass valve
- Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve
- High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve
- High collapse filter element "U", for use with aggressive
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-shore equipment
- Water filtration systems
- Systems with strong or corrosive environmental conditions
- Systems with corrosive fluids

Filter housing materials

- Head: AISI 316L
- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
- Optional FPM series V (-20 °C to +120 °C)
- Optional MFQ series F (-50 °C to +120 °C)

Bypass valve

Opening pressure 6 bar ±10%

Temperature

From -50 °C to +120 °C

Note

FZH filters are provided for vertical mounting

Δp element type

Fluid flow through the filter element from OUT to IN

Microfibre filter elements - series N-R: 20 bar.

Element series "N - R":

- End cap: Nylon
- Core tube: Tinned Steel
- External/Internal support: Wire mesh Epox painted
- Media/Support/Pre-filter: Microfibre/Syntetic

Microfibre filter elements - series H-S: 210 bar. Element series "H - S":

- End cap: Tinned Steel
- Core tube: Tinned Steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

Element series "U":

- End cap: Stainless Steel
- Core tube: Stainless Steel
- External support: Stainless Steel
- Internal support: Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Weights [kg] and volumes [dm³]

Filter series	Weights [kg]					Volumes [dm³]				
	Length					Length				4
FZH 010-011		2.1	2.2	2.7	3.3		0.10	0.12	0.15	0.20
FZH 039		-	7.8	8.9	10.1		-	0.19	0.26	0.34

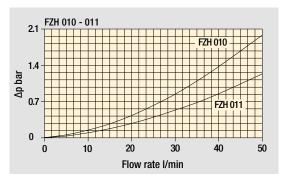
FILTER ASSEMBLY SIZING Flow rates [I/min]

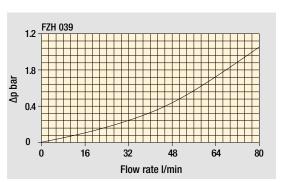
			Filter elem	ent design	- R Series			Filter eleme	nt design -	S-U Series	
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25
	1	4	6	8	9	11	4	5	6	7	9
FZH 010	2	7	9	17	20	26	5	7	14	17	23
F211 010	3	11	14	25	27	32	11	14	24	27	32
	4	17	20	29	31	34	13	16	26	29	33
	1	4	6	8	9	11	3	5	6	7	9
FZH 011	2	7	9	17	21	28	5	7	14	17	24
F211 U1 1	3	11	14	26	30	37	11	14	25	29	36
	4	17	21	32	36	40	12	16	28	32	38
	2	19	25	43	50	59	19	23	41	45	55
FZH 039	3	34	37	53	62	74	31	34	48	52	66
	4	42	46	63	72	81	38	41	55	71	78

Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

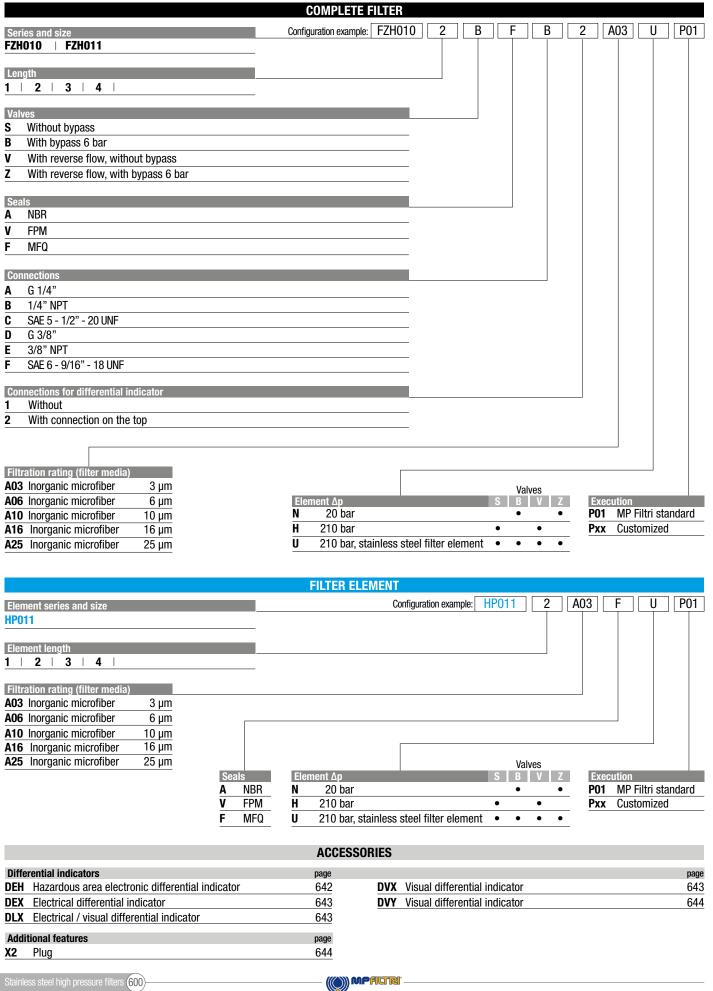
For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

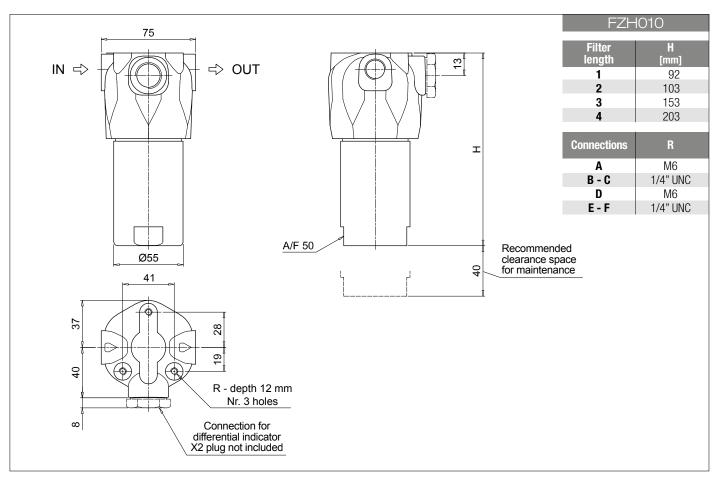

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

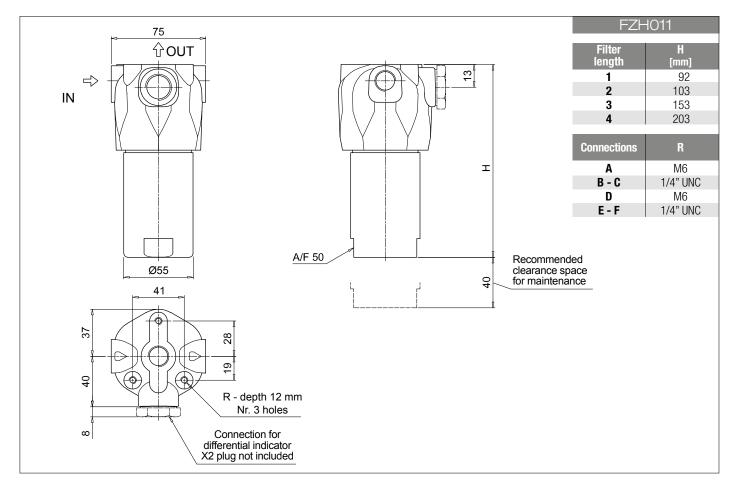

Hydraulic symbols

Filter series	Style S	Style B	Style T	Style D	Style V	Style Z
FZH 010-011	•	•			•	•
FZH 039	•	•	•	•	•	•
	OUT D.I.	OUT TO THE PART OF	DI.	OUT TO THE PART OF	OUT TO THE PART OF	D.I. W

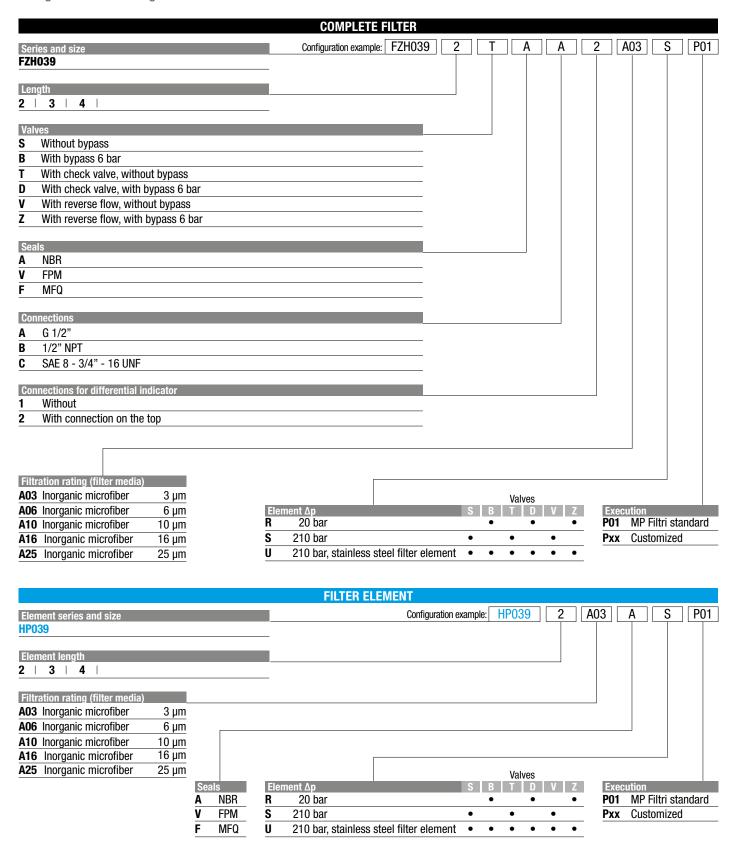
Pressure drop

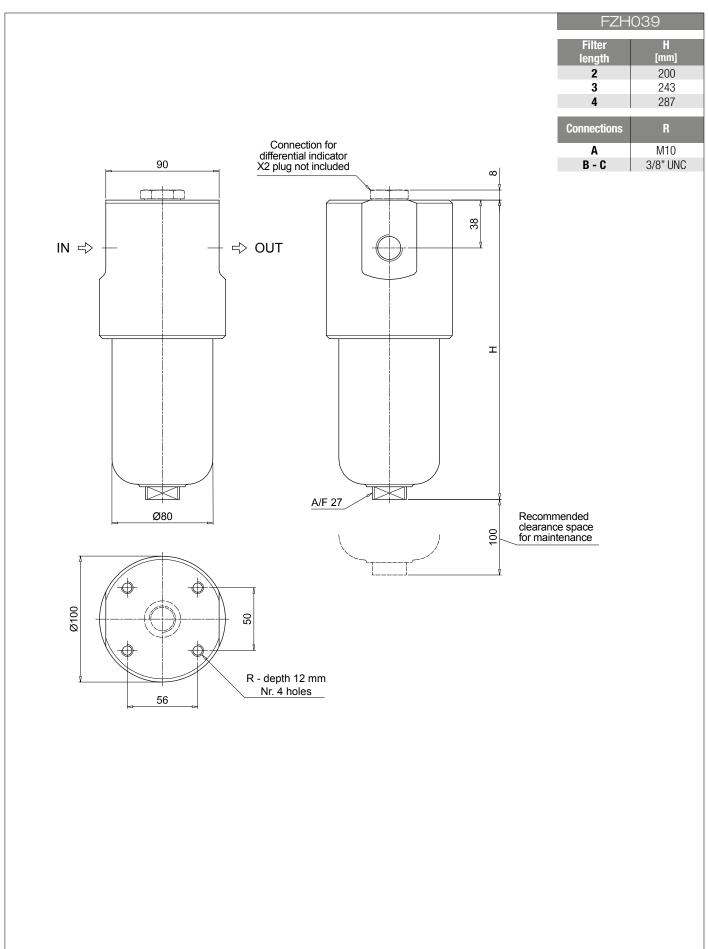

Filter housings Δp pressure drop



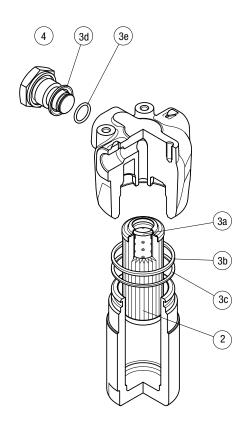

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

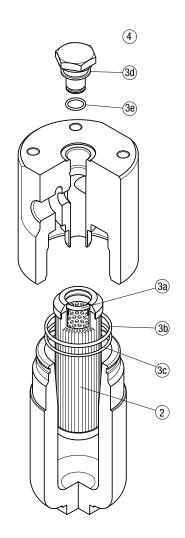
Designation & Ordering code


Dimensions



Designation & Ordering code


	ACCES	SORIES	
Differential indicators	page		page
DEH Hazardous area electronic differential indicator	642	DVX Visual differential indicator	643
DEX Electrical differential indicator	643	DVY Visual differential indicator	644
DLX Electrical / visual differential indicator	643		
Additional features	page		
X2 Plug	644		
Stainless steel high pressure filters 602			


Dimensions

Order number for spare parts

	Q.ty: 1 pc.	Q.ty: 1 pc.		Q.ty: 1 pc.	
Item:	2	3 (3a ÷ 3e)		4	
Filter series	Filter element			Indicator connection plug NBR FPM	
FZH 010-011	orger	02050501	02050492	X2H	X2V
FZH 039		02050335	02050336		

FZX series

Maximum working pressure up to 100 Mpa (1000 bar) - Flow rate up to 10 l/min

Description

Technical data

Stainless steel high pressure filters

In-line

Maximum working pressure up to 100 Mpa (1000 bar) Flow rate up to 10 l/min

FZX is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- 1/2" female threaded connections, for a maximum flow rate of 10 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- High collapse filter element "H", for use with filters not provided with bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-shore equipment
- Water filtration systems
- Systems with strong or corrosive environmental conditions
- Systems with corrosive fluids

Filter housing materials

- Head: AISI 316L
- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
- Optional FPM series V (-20 °C to +120 °C)
- Optional MFQ series F (-50 °C to +120 °C)

Bypass valve

Opening pressure 6 bar ±10%

Temperature

From -50 °C to +120 °C

Note

FZX filters are provided for vertical mounting

Δp element type

Fluid flow through the filter element from OUT to IN Microfibre filter elements - series H: 210 bar.

Element series "H":

- End cap: Tinned Steel
- Core tube: Tinned Steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

Element series "U":

- End cap: Stainless Steel
- Core tube: Stainless Steel
- External support: Stainless Steel
- Internal support: Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic

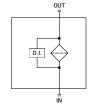
Weights [kg] and volumes [dm³]

Filter series	Weights [kg]						Volumes [dm³]					
	Length						Length					
FZX 011		-	-	6.5	-			-	-	0.15	-	

FILTER ASSEMBLY SIZING Flow rates [I/min]

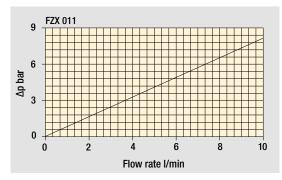
		Filter element design - H-U Series									
Filter series	Length	A03 A06 A10 A16 A25									
FZX 011	3	1.57 1.63 1.73 1.74 1.77									

Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar.


The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

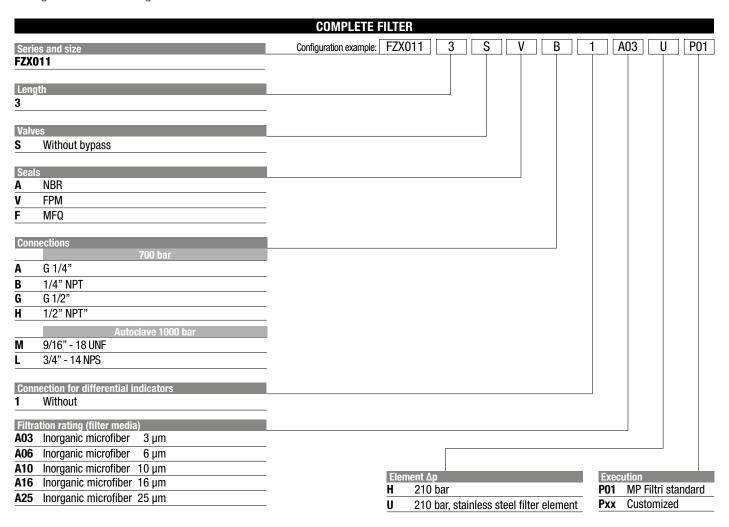
For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

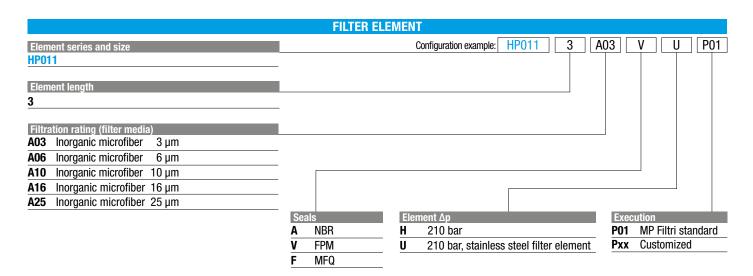
You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

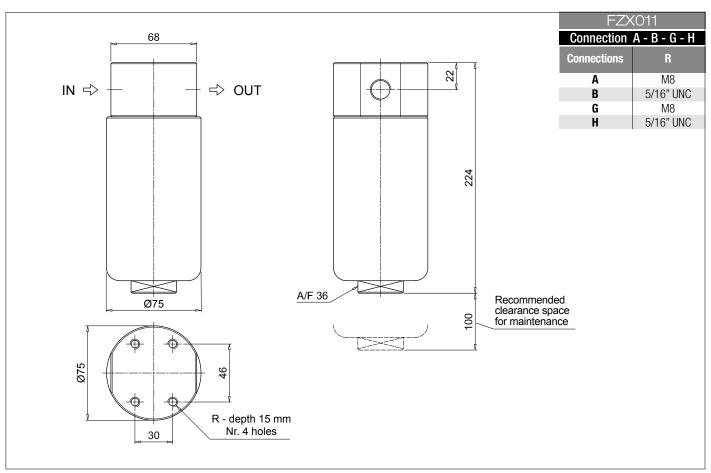

Hydraulic symbols

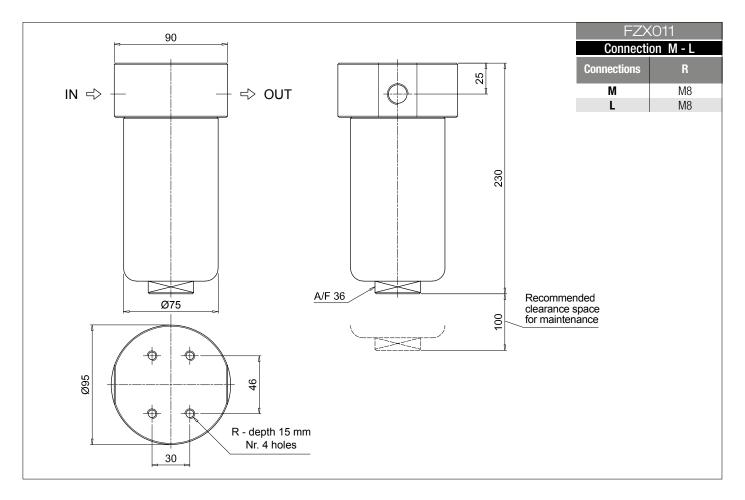
Filter series	Style S
FZX 011	•

Pressure drop

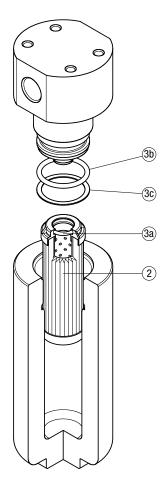

Filter housings Δp pressure drop




The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.



Designation & Ordering code



Order number for spare parts

	Q.ty: 1 pc.	Q.ty:	1 pc.				
Item:	2		3 (3a ÷ 3c)				
Filter series	Filter element	Seal Kit co NBR	de number FPM				
FZX 011	See order table	02050643	02050644				

FZM series

Maximum working pressure up to 32 Mpa (320 bar) - Flow rate up to 70 l/min

$ee\mathsf{V}$ general information

Description

Technical data

Maximum working pressure up to 32 Mpa (320 bar) Flow rate up to 70 I/min

FZM is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions.

They are directly connected to the top of the manifold, through the proper flanged interface.

Available features:

- Manifold connections up to Ø15 mm, for a maximum flow rate of 70 I/min
- ISO 4401 CETOP 3 and CETOP 5 interface, for direct mounting on the CETOP valves.
- Fine filtration rating, to get a good cleanliness level into the system
- Bypass valve, to relieve excessive pressure drop across the filter media
- Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve
- High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-shore equipment
- Water filtration systems
- Systems with strong or corrosive environmental conditions
- Systems with corrosive fluids

Filter housing materials

- Head: AISI 316L
- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
- Optional FPM series V (-20 °C to +120 °C)
- Optional MFQ series F (-50 °C to +120 °C)

Bypass valve

Opening pressure 6 bar ±10%

Temperature

From -50 °C to +120 °C

Note

FZM filters are provided for vertical mounting

Δp element type

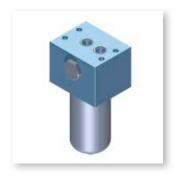
Fluid flow through the filter element from OUT to IN

Microfibre filter elements - series R: 20 bar.

Element series "R":

- End cap: Nylon
- Core tube: Tinned Steel
- External/Internal support: Wire mesh Epox painted
- Media/Support/Pre-filter: Microfibre/Syntetic

Microfibre filter elements - series S: 210 bar.


Element series "S":

- End cap: Tinned Steel
- Core tube: Tinned Steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

Element series "U":

- End cap: Stainless Steel
- Core tube: Stainless Steel
- External support: Stainless Steel
- Internal support: Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Weights [kg] and volumes [dm³]

Filter series	Weights [kg]						Volumes [dm³]					
	Length						Length					
FZM 039		-	5.0	5.6	6.1			-	0.19	0.26	0.34	

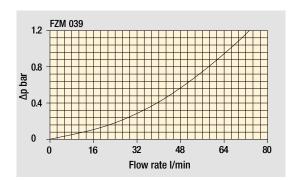
FILTER ASSEMBLY SIZING Flow rates [I/min]

			Filter elem	ent design	- R Series		Filter element design - S-U Series						
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25		
	2	19	25	41	47	54	19	23	39	43	51		
FZM 039	3	33	36	50	56	65	30	33	45	49	60		
	4	41	44	58	64	70	37	39	51	63	68		

Maximum flow rate for a complete stainless steel high pressure filter with a return drop $\Delta p = 1.5$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

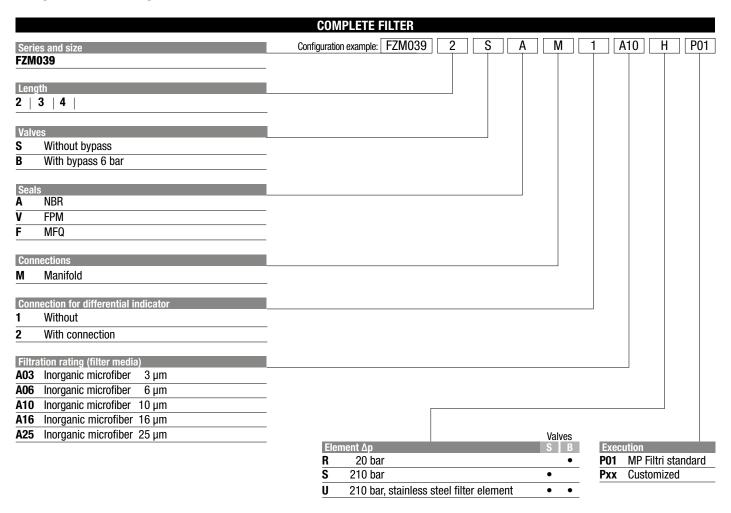
For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

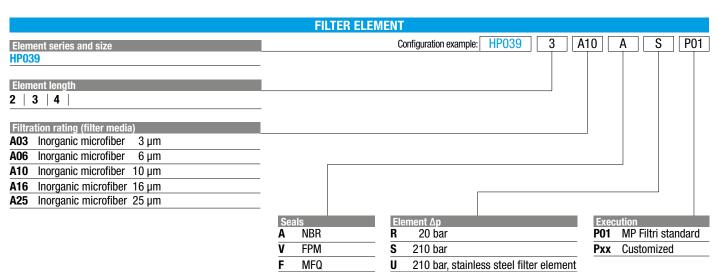

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

Hydraulic symbols

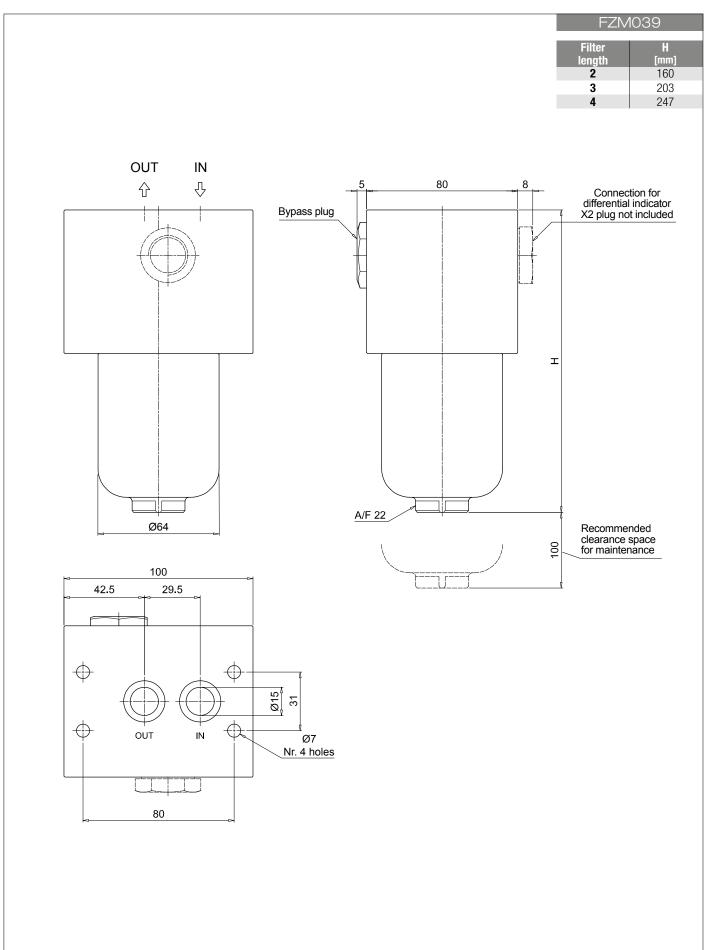
Filter series	Style S	Style B
FZM 039	•	•
	о и т 	оит <u>Т</u>
	D.I.	D.I.

Pressure drop

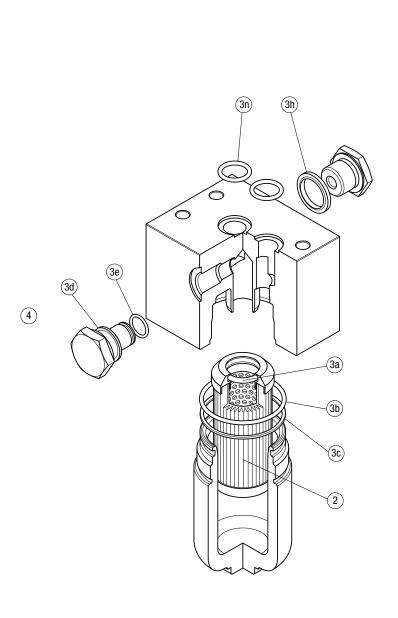

Filter housings Δp pressure drop



The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.



Designation & Ordering code



	۸۰۰۶۰	SORIES	
	AUUES	SUNIES	
Differential indicators	page		page
DEH Hazardous area electronic differential indicator	642	DVX Visual differential indicator	643
DEX Electrical differential indicator	643	DVY Visual differential indicator	644
DLX Electrical / visual differential indicator	643		
Additional features	page		
X2 Plug	644		

Order number for spare parts

FZM 039

	Q.ty: 1 pc.		1 pc.	Q.ty: 1 pc.				
Item:	2		3) (3a ÷ 3n)	4				
Filter series	Filter element	Seal Kit co NBR	de number FPM	Indicator connection plug NBR FPM				
FZM 039	See order table	02050651	02050652	X2H	X2V			

FZB series

Maximum working pressure up to 32 Mpa (320 bar) - Flow rate up to 70 l/min

FZB GENERAL INFORMATION

Description

Technical data

Stainless steel high pressure filters

Manifold

Maximum working pressure up to 32 Mpa (320 bar) Flow rate up to 70 l/min

FZB is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions.

They are directly connected to the side of the manifold, through the proper flanged interface.

Available features:

- Manifold connections up to $\emptyset 16$ mm, for a maximum flow rate of 75 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- Bypass valve, to relieve excessive pressure drop across the filter media
- Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve
- High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-shore equipment
- Water filtration systems
- Systems with strong or corrosive environmental conditions
- Systems with corrosive fluids

Filter housing materials

- Head: AISI 316L
- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
- Optional FPM series V (-20 °C to +120 °C)
- Optional MFQ series F (-50 °C to +120 °C)

Bypass valve

Opening pressure 6 bar ±10%

Temperature

From -50 °C to +120 °C

Note

FZB filters are provided for vertical mounting

Δp element type

Fluid flow through the filter element from OUT to IN

Microfibre filter elements - series R: 20 bar.

Element series "R":

- End cap: Nylon
- Core tube: Tinned Steel
- External/Internal support: Wire mesh Epox painted
- Media/Support/Pre-filter: Microfibre/Syntetic

Microfibre filter elements - series S: 210 bar.

Element series "S":

- End cap: Tinned Steel
- Core tube: Tinned Steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

Element series "U":

- End cap: Stainless Steel
- Core tube: Stainless Steel
- External support: Stainless Steel
- Internal support: Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Weights [kg] and volumes [dm3]

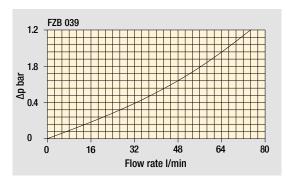
Filter series	Weights [kg]						Volumes [dm³]					
	Length					Lengt						
FZB 039		-	4.6	5.2	5.7		-	0.19	0.26	0.34		

		Filte	Filter element design - R Series Filter element design - S Series								Filter element design - U Series					
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25
	2	18	23	39	44	52	18	22	37	40	48	18	22	37	40	48
FZB 039	3	31	33	47	54	65	28	31	43	46	84	28	31	43	46	84
	4	38	41	56	63	71	34	36	48	62	68	34	36	48	62	68

Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

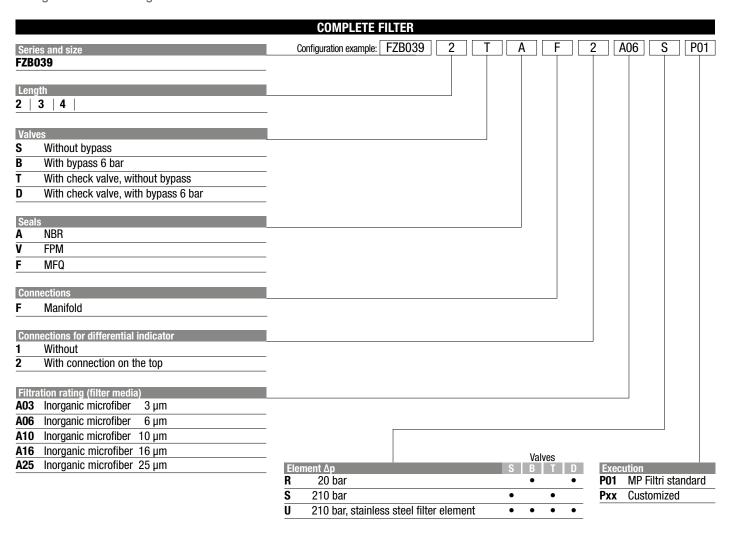
For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

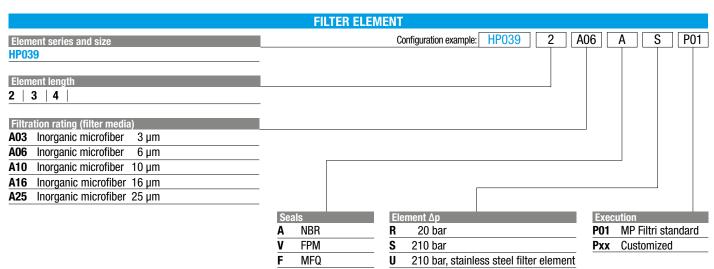

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

Hydraulic symbols

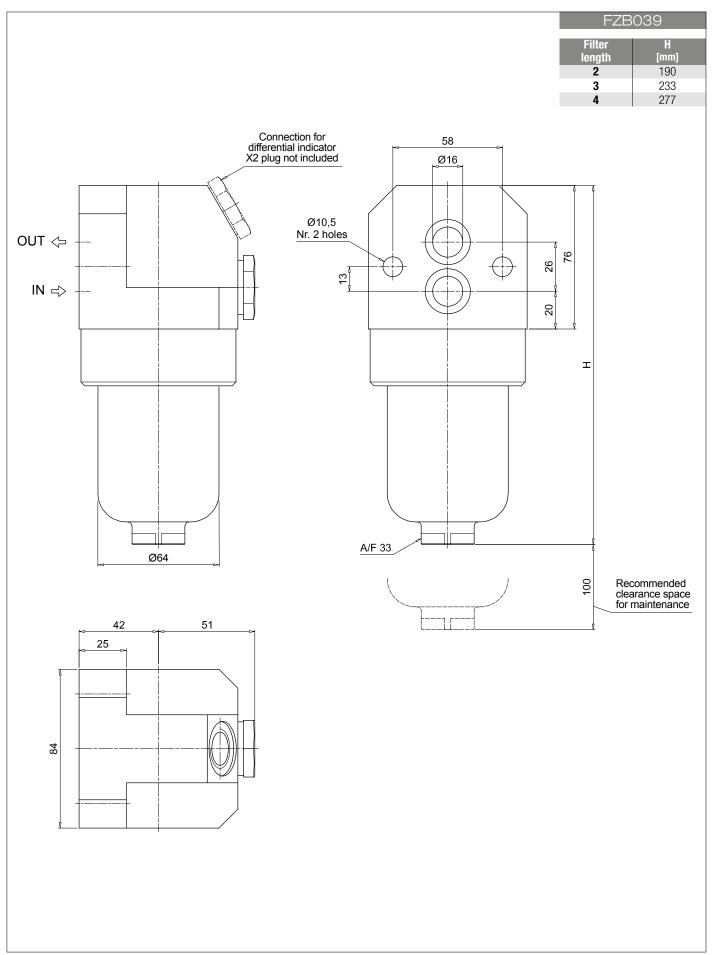
D
JT :

Pressure drop

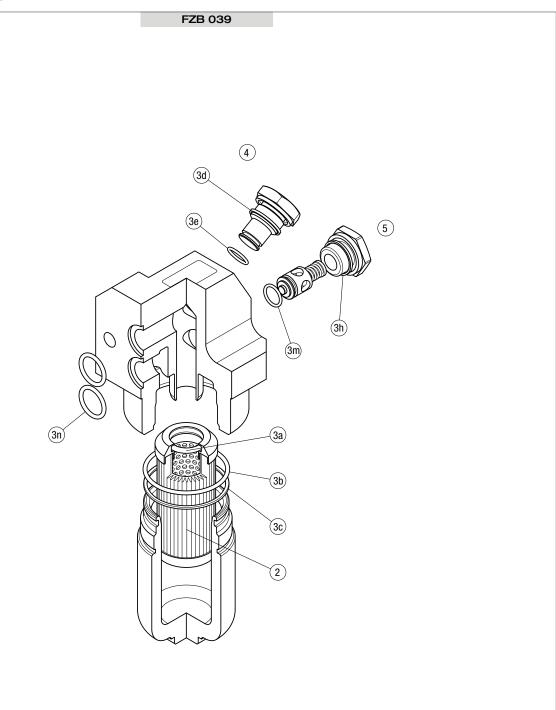

Filter housings Δp pressure drop



The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.



Designation & Ordering code



ACCESSORIES							
Differential indicators	page		page				
DEH Hazardous area electronic differential indicator	642	DVX Visual differential indicator	643				
DEX Electrical differential indicator	643	DVY Visual differential indicator	644				
DLX Electrical / visual differential indicator	643						
Additional features	page						
X2 Plug	644						

FZB SPARE PARTS

Order number for spare parts

	Q.ty: 1 pc.	Q.ty:	1 pc.	Q.ty:	1 pc.	Q.ty: 1 pc.		
Item:	2		3a ÷ 3n)		4	5		
Filter series	Filter element	Seal Kit co NBR	de number FPM	Indicator connection plug NBR FPM		Bypass asse NBR	embly / plug FPM	
FZB 039	See order table	02050647	02050648	X2H	X2V	02001286	02001295	

FZD series

Maximum working pressure up to 35 Mpa (350 bar) - Flow rate up to 60 l/min

FZD GENERAL INFORMATION

Description

Technical data

Stainless steel high pressure filters

Duplex

Maximum working pressure up to 35 Mpa (350 bar) Flow rate up to 60 l/min

FZD is a range of stainless steel high pressure duplex filter with integrated changeover function to allow the filter element replacement without the system shut-down. They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Female threaded connections up to 3/4", for a maximum flow rate of 90 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- Balancing valve, available for FZD051, to equalize the housing pressure before the switch.
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work
- High collapse filter element "H", for use with filters not provided with bypass valve
- Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve
- High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- System where shut-down causes high costs
- System where shut-down causes safety issues

Filter housing materials

- Head: AISI 316L
- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
- Optional FPM series V (-20 °C to +120 °C)
- Optional MFQ series F (-50 °C to +120 °C)

Bypass valve

Opening pressure 6 bar ±10%

Temperature

From -50 °C to +120 °C

Note

FZD filters are provided for vertical mounting

Δp element type

Fluid flow through the filter element from OUT to IN

Microfibre filter elements - series R: 20 bar.

Element series "R":

- End cap: Nylon
- Core tube: Tinned Steel
- External/Internal support: Wire mesh Epox painted
- Media/Support/Pre-filter: Microfibre/Syntetic

Microfibre filter elements - series H-S: 210 bar. Element series "H - S":

- End cap: Tinned Steel
- Core tube: Tinned Steel
- Core tube: Tiriried Steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

Element series "U":

- End cap: Stainless Steel
- Core tube: Stainless Steel
- External support: Stainless Steel
- Internal support: Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Weights [kg] and volumes [dm³]

Filter series			Weigh	ts [kg]					Volume	es [dm³]		
	Length						Length					
FZD 010		-	7.9	-	-	-		-	0.10	-	-	-
FZD 021		-	9.6	9.8	10.3	-		-	0.06	0.12	0.22	-
FZD 051		-	17.4	18.0	19.0	20.3		-	0.31	0.41	0.53	0.83

FILTER ASSEMBLY SIZING Flow rates [I/min]

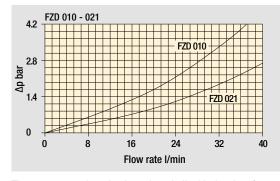
			Filter elem	ent design	design - H Series Filter element design - U Series						
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25
FZD 010	2	4	5	7	8	11	4	5	7	8	11
	2	5	6	11	12	16	5	6	11	12	16
FZD 021	3	9	11	16	18	20	9	11	16	18	20
	4	10	12	17	19	21	10	12	17	19	21

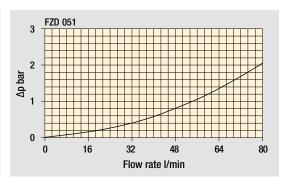
		Filte	r elemei	nt desig	n - RS	eries	Filter	r elemei	nt desig	n - SS	eries	Filte	r elemei	nt desig	n - US	eries
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25
	2	39	41	51	54	59	35	37	48	51	58	35	37	48	51	58
FZD 051	3	45	46	54	56	61	41	43	52	54	60	41	43	52	54	60
FZD 031	4	50	52	58	58	62	47	49	56	56	61	47	49	56	56	61
	5	56	57	61	62	63	53	53	57	59	63	53	53	57	59	63

Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

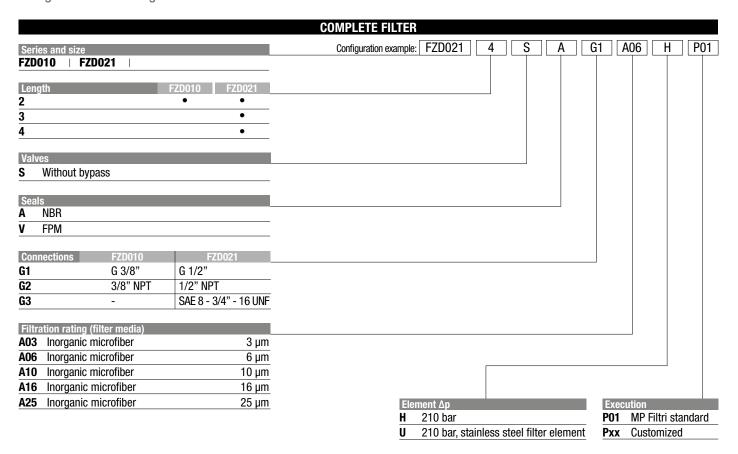
For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

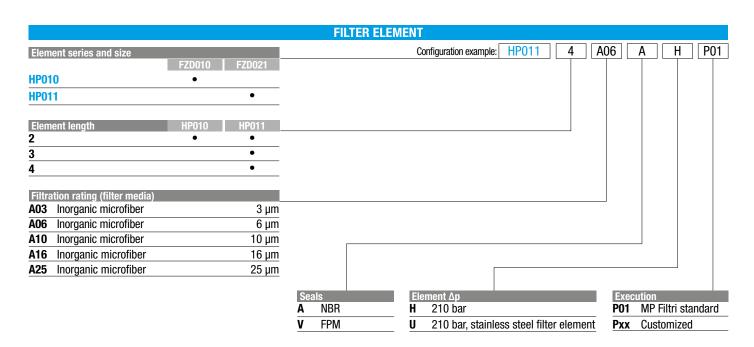

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

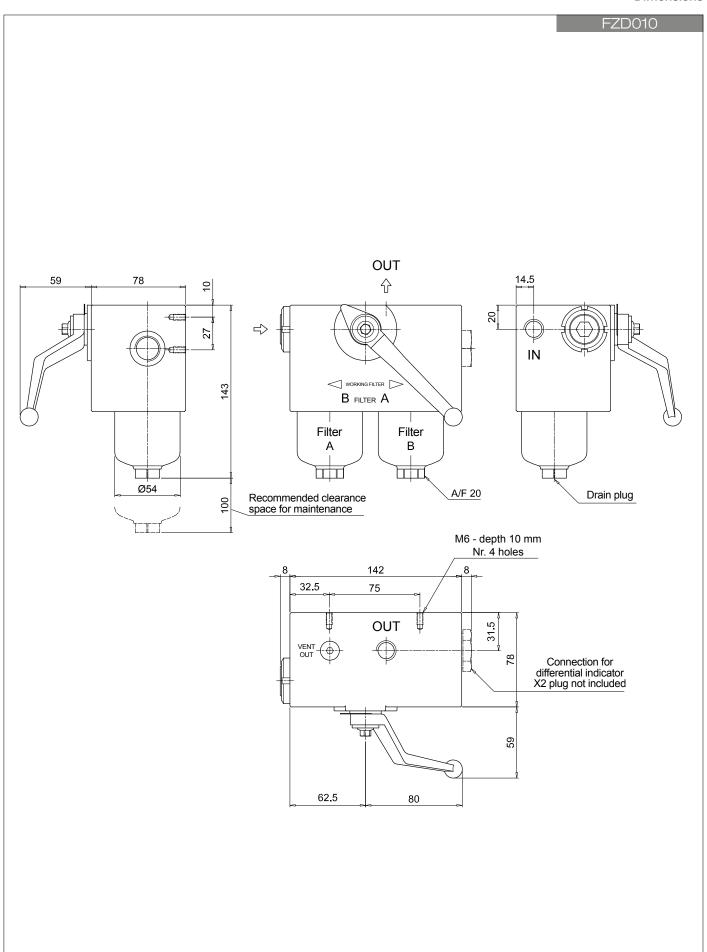

Hydraulic symbols

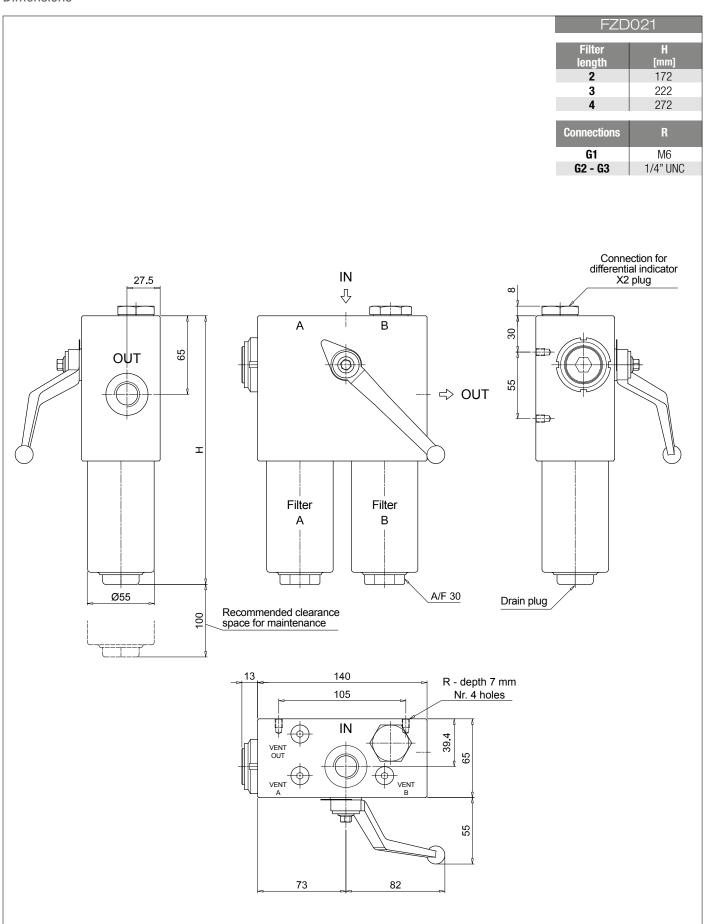
Filter series	Style S	Style B
FZD 010	•	
FZD 021	•	
FZD 051	•	•
	D.I.	OUT TO THE PART OF

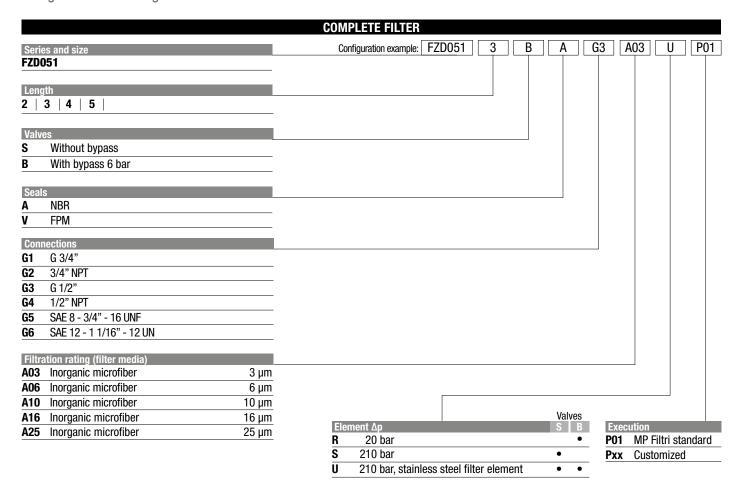
Pressure drop

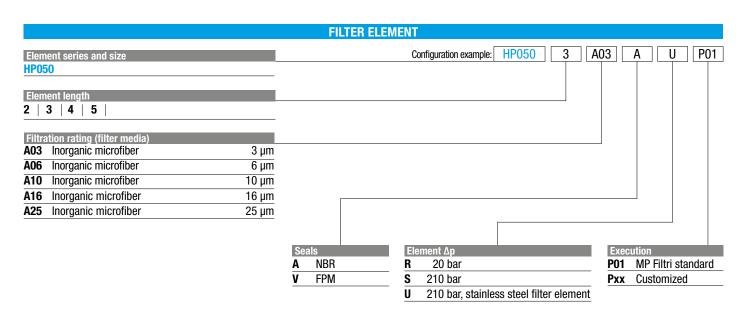

Filter housings Δp pressure drop

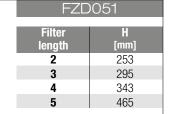



The curves are plotted using mineral oil with density of 0.86 kg/dm^3 in compliance with ISO 3968. Δp varies proportionally with density.

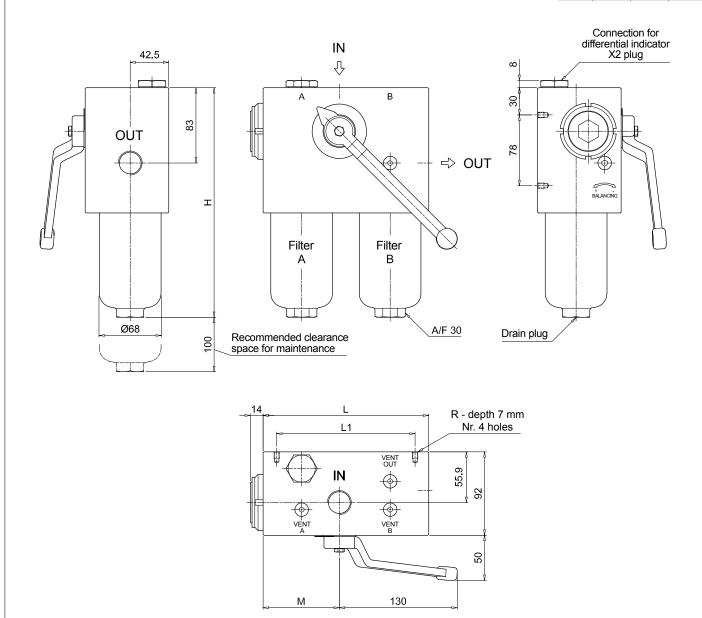

Designation & Ordering code


		ACCES	SORIES	
Diffe	erential indicators	page		page
DEH	Hazardous area electronic differential indicator	642	DVX Visual differential indicator	643
DEX	Electrical differential indicator	643	DVY Visual differential indicator	644
DLX	Electrical / visual differential indicator	643		
Addi	tional features	page		
X2	Plug	644		

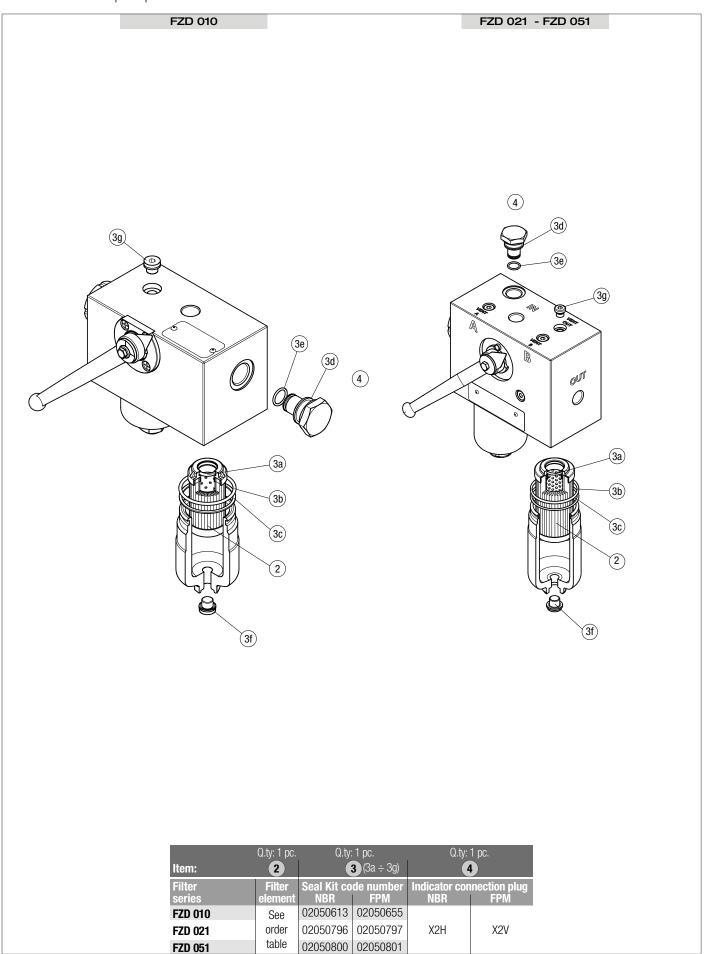




Designation & Ordering code



	ACCES	SORIES	
Differential indicators	page		page
DEH Hazardous area electronic differential indicator	642	DVX Visual differential indicator	643
DEX Electrical differential indicator	643	DVY Visual differential indicator	644
DLX Electrical / visual differential indicator	643		
Additional features	page		
X2 Plug	644		


Connections	R
G1	M6
G2	1/4" UNC
G3	M6
G4-G5-G6	1/4" UNC

Valves	L [mm]	L1 [mm]	M [mm]
S	168	138	84
В	182.5	152.5	98.5

FZD SPARE PARTS

Order number for spare parts

Clogging indicators

Differential indicators

Introduction

Filter elements are efficient only if their Dirt Holding Capacity is fully exploited. This is achieved by using filter housings equipped with clogging indicators.

These devices trip when the clogging of the filter element causes an increase in pressure drop across the filter element.

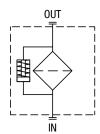
The indicator is set to alarm before the element becomes fully clogged.

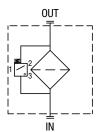
MP Filtri can supply indicators of the following designs:

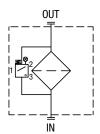
- Vacuum switches and gauges
- Pressure switches and gauges
- Differential pressure indicators

These type of devices can be provided with a visual, electrical or both signals.

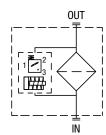
Suitable indicator types

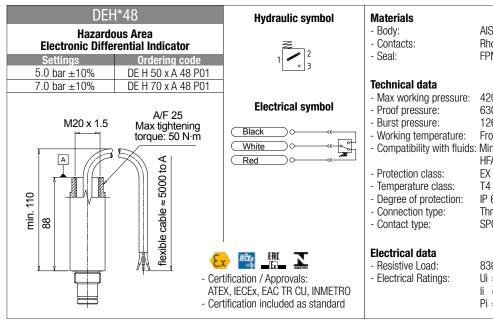

DIFFERENTIAL INDICATORS


Differential indicators are used on the Pressure line to check the efficiency of the filter element. They measure the pressure upstream and downstream of the filter element (differential pressure).


Standard items are produced with special

connection G 1/2" size.


Also available in Stainless Steel models.


Hazardous

Quick reference guide

	Filter series	Visual indicator	Electrical indicator	Electrical / Visual indicator	area electronic indicator
With bypass valve	FZH 010 - 011 - 039 FZP 039 - 136 FZX 011 FZB 039 FZM 039 FZD 051	DVX50xP01 DVY50xP01	DEX50xA50P01	DLX50xA51P01 DLX50xA52P01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01 DEH70xA48P01 DEH70xA49P01 DEH70xA70P01
Without bypass valve	FZH 010 - 011 - 039 FZP 039 - 136 FZB 039 FZM 039 FZD 010 - 021 - 051	DVX70xP01 DVY70xP01	DEX70xA50P01	DLX70xA51P01 DLX70xA52P01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01 DEH70xA48P01 DEH70xA49P01 DEH70xA70P01
			NII MPALTRI		64

Dimensions

AISI 316L Rhodium FPM - MFQ

420 bar 630 bar 1260 bar

From -60 °C to +125 °C - Compatibility with fluids: Mineral oils, Synthetic fluids HFA, HFB, HFC according to ISO 2943 EX ia IIC T4/T6: Intrinsically safe

T4 (135 °C) and T6 (85 °C) IP 66/67/68 according to EN 60529 Three-core cable, fitting M20x1.5

SPCO/SPDT (Hermetically sealed - Volt-free contacts)

830 mA / 24 Vdc - 180 mA / 110 Vac

Ui = 30 Vdcli = 250 mA

Pi = 1.3 W

DEH*49 Hydraulic symbol Hazardous Area Electronic Differential Indicator Ordering cod 5.0 bar ±10% DE H 50 x A 49 P01 7.0 bar ±10% DE H 70 x A 49 P01 **Electrical symbol** A/F 25 Black 1/2" NPT Max tightening White torque: 50 N·m Red «**(** Α Green flexible cable ≈ 5000 to 110 min. 88 - Certification / Approvals: ATEX, IECEX, EAC TR CU, INMETRO, UL/CSA Class I Division 1 Groups A-D, UL/CSA Class II Division 1 Groups E-G - Certification included as standard

Materials

- Body: AISI 316L - Contacts: Rhodium FPM - MFQ - Seal:

Technical data

 Max working pressure: 420 bar - Proof pressure: 630 bar - Burst pressure: 1260 bar

From -60 °C to +120 °C : - Working temperature:

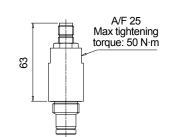
ATEX, IECEX, EAC TR CU, INMETRO From -60 °C to +105 °C : UL/CSA

- Compatibility with fluids: Mineral oils, Synthetic fluids

HFA, HFB, HFC according to ISO 2943 Ex d IIC T4/T6: Flameproof - Protection class: T4 (135 °C) and T6 (85 °C) - Temperature class:

IP 66/67/68 according to ÉN 60529 - Degree of protection: - Connection type: Four-core cable, fitting 1/2" NPT

- Contact type: SPCO/SPDT (Hermetically sealed - Volt-free contacts)


Electrical data

- Resistive Load: 830 mA / 24 Vdc - 180 mA / 110 Vac

- Max voltage 150 Vac/dc - Power 20 W

DEH*70 **Hazardous Area Electronic Differential Indicator**

Settings	Ordering code
5.0 bar ±10%	DE H 50 x A 70 P01
7.0 bar ±10%	DE H 70 x A 70 P01

Hydraulic symbol

Electrical symbol

Certification / Approvals:

ATEX, IECEX, EAC TR CU, INMETRO

Materials

- Body: AISI 316L with internal engineered resin switch

- Contacts: Rhodium FPM - MFQ - Seal:

Technical data

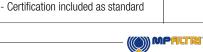
 Max working pressure: 420 bar - Proof pressure: 630 bar - Burst pressure: 1260 bar

From -60 °C to +80 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids HFA, HFB, HFC according to ISO 2943

- Protection class: EX ia IIC T6: Intrinsically safe

- Temperature class: T6 (85 °C)

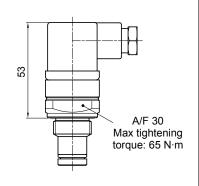
IP 66/67 according to EN 60529 - Degree of protection: IEC 61076-2-101 D (M12) - Connection type:


SPCO/SPDT (Hermetically sealed - Volt-free contacts) - Contact type:

Electrical data

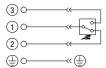
830 mA / 24 Vdc - 180 mA / 110 Vdc - Resistive Load:

- Electrical Ratings: Ui = 30 Vdc


li = 250 mAPi = 1.3 W

Dimensions

DEX*50 Electrical Differential Indicator


Settings	Ordering code
5.0 bar ±10%	DE X 50 x A 50 P01
7.0 bar ±10%	DE X 70 x A 50 P01
9.5 har +10%	DE X 95 y A 50 P01

Hydraulic symbol

Electrical symbol

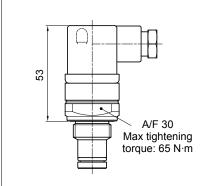
Materials

- Body: AISI 316L
- Base: Black Nylon
- Contacts: Silver
- Seal: HNBR - MFQ

Technical data

Max working pressure: 420 barProof pressure: 630 barBurst pressure: 1260 bar

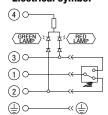
Working temperature: From -25 °C to +110 °C
 Compatibility with fluids: Mineral oils, Synthetic fluids HFA, HFB, HFC according to ISO 2943
 Degree protection: IP66 according to ISO 20653


Electrical data

- Electrical connection: EN 175301-803 - Resistive load: 0.2 A / 115 Vdc

DLX*51 - DLX*52

Electrical/Visual Differential Indicator


Settings	Ordering code
5.0 bar ±10%	DL X 50 x A x x P01
7.0 bar ±10%	DL X 70 x A x x P01
9.5 har +10%	DL X 95 x Δ x x PΩ1

Hydraulic symbol

Electrical symbol

Materials

Body: AISI 316L
Base: Transparent Nylon
Contacts: Silver
Seal: HNBR - MFQ

Technical data

Max working pressure: 420 barProof pressure: 630 barBurst pressure: 1260 bar

Working temperature: From -25 °C to +110 °C
 Compatibility with fluids: Mineral oils, Synthetic fluids

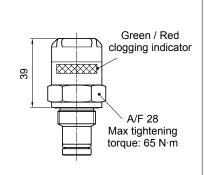
HFA, HFB, HFC according to ISO 2943

- Degree protection: IP66 according to EN 60529

IP69K according to ISO 20653

Electrical data

- Electrical connection: EN 175301-803


- Type 51 52

- Lamps 24 Vdc 110 Vdc - Resistive load: 1 A / 24 Vdc 1 A / 110 Vdc

DVX

Visual Differential Indicator

Settings	Ordering code
5.0 bar ±10%	DV X 50 x P01
7.0 bar ±10%	DV X 70 x P01
9.5 har +10%	DV X 95 x P01

Hydraulic symbol

Materials

- Body: AISI 316L
- Internal parts: AISI 316L - Nylon
- Contacts: Silver
- Seal: HNBR - MFQ

Technical data

Reset: Automatic reset
Max working pressure: 420 bar
Proof pressure: 630 bar
Burst pressure: 1260 bar

- Working temperature: From -25 $^{\circ}$ C to +110 $^{\circ}$ C - Compatibility with fluids: Mineral oils, Synthetic fluids

HFA, HFB, HFC according to ISO 2943

- Degree protection: IP65 according to EN 60529

ERENTIAL INDICATORS

Dimensions

Visual Differential Indicator Settings Ordering code DV Y 50 x P01 5.0 bar ±10% 7.0 bar ±10% DV Y 70 x P01 9.5 bar ±10% DV Y 95 x P01 Red clogging indicator 34 A/F 30 Max tightening torque: 65 N·m

DVY

Hydraulic symbol

Materials

- Body: AISI 316L - Internal parts: AISI 316L - Nylon - Contacts: Silver - Seal: HNBR - MFQ

Technical data

- Reset: Manual reset - Max working pressure: 420 bar - Proof pressure: 630 bar - Burst pressure: 1260 bar

From -25 °C to +110 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids

HFA, HFB, HFC according to ISO 2943 - Degree protection: IP65 according to EN 60529

X2 **Indicator plug** Ordering code **HNBR** X2 H MFQ X2 F A/F 30

Max tightening torque: 50 N·m

Materials

- Body: AISI 316L - Seal: HNBR / MFQ

Designation & Ordering code

DESIGNATION & ORDI	ERING CODE - DIFFERENTIAL INDI	CATORS	
Series	Configuration example 1: DE	H 50 I	F A 48 P01
DE Electrical differential indicator	Configuration example 2: DL	X 50 I	H A 51 P01
DL Electrical / Visual differential indicator	Configuration example 3: DV		V P01
DV Visual differential indicator	Configuration example 3.		,
Type			
X Standard type • • •			
Y Optional type			
optional type			
Pressure setting DEH DEX DL DV			
50 5.0 bar • • •			
70 7.0 bar • • •			
95 9.5 bar • •			
Seals DEH DEX DL DV			
H HNBR • • •			
V FPM • • •			
F MFQ ●			
Thermostat DEH DEX DL DV			
A Without • • •			
Electrical connections	DEH DEX DL DV		
48 Connection via three-core cable - fitting M20x1.5	•		
49 Connection via four-core cable - fitting 1/2" NPT 50 Connection EN 175301-803	•		
51 Connection EN 175301-803, transparent base with lamps 24 V	• (do		0
52 Connection EN 175301-803, transparent base with lamps 110			Option P01 MP Filtri standard
70 Connection IEC 61076-2-101 D (M12)	•		Pxx Customized
To commodant the cross of the balance	_		
DESIGNATION & ORDER	ING CODE - DIFFERENTIAL INDICA	TOR PLUG	
Series	Configuration example X2	Н	
X2 Indicator plug	U. mani similari		
Seals H HNBR			
V FPM			

Clogging indicators are devices that check the life time of the filter elements. They measure the pressure drop through the filter element directly connected to the filter housing.

These devices trip when the clogging of the filter element causes a pressure drop increasing across the filter element.

Filter elements are efficient only if their Dirt Holding Capacity is fully exploited. This is achieved by using filter housings equipped with clogging indicators. The indicator is set to alarm before the element becomes fully clogged.

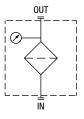
MP Filtri can supply indicators of the following designs:

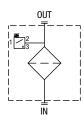
- Vacuum switches and gauges
- Pressure switches and gauges
- Differential pressure indicators

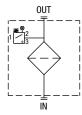
These type of devices can be provided with a visual, electrical or both signals. The electronic differential pressure clogging indicator is also available. It provides both analogical 4-20 mA output and digital warning (75% of clogging) and alarm (clogging) outputs.

Clogging Indicators

Clogging indicators

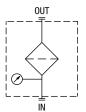


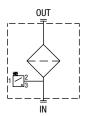

Suitable indicator types

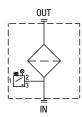

VACUUM INDICATORS

Vacuum indicators are used on the Suction line to check the efficiency of the filter element.

They measure the pressure downstream of the filter element. Standard items are produced with R 1/4" EN 10226 connection. Available products with R 1/8" EN 10226 to be fitted on MPS series.

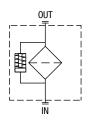


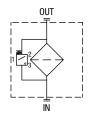


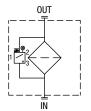

BAROMETRIC INDICATORS

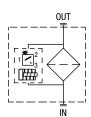
Pressure indicators are used on the Return line to check the efficiency of the filter element.

They measure the pressure upstream of the filter element. Standard items are produced with R 1/8" EN 10226 connection.

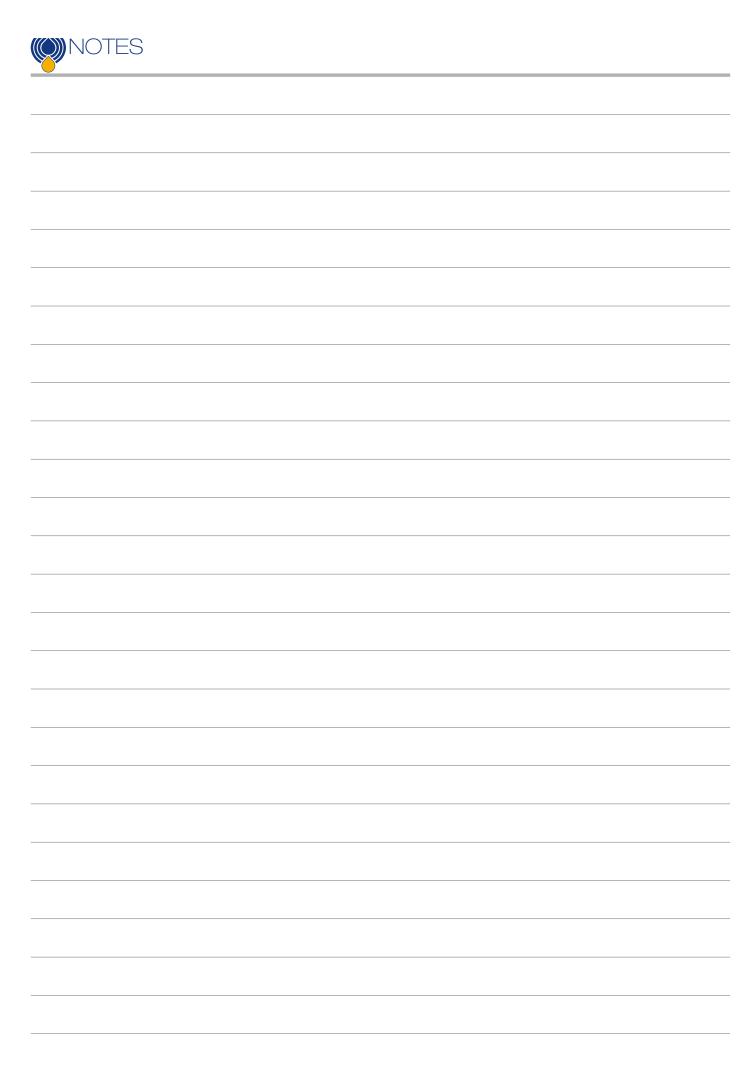



DIFFERENTIAL INDICATORS


Differential indicators are used on the Pressure line to check the efficiency of the filter element.


They measure the pressure upstream and downstream of the filter element (differential pressure).

Standard items are produced with special connection G 1/2" size. Also available in Stainless Steel models.



Filter family	Filter series		Electrical indicator	Electrical / Visual indicator	Electronic indicator	Visual indicator
SUCTION FILTERS	ELIXIR SFEX060-	080-110-160	VEB21AA50P01	VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01		VVB16P01 VVS16P01
		- 350 - 501 - 503 - 504 - 505 - 535 - 540	VEA21AA50P01	VLA21AA51P01 VLA21AA52P01 VLA21AA53P01 VLA21AA71P01		VVA16P01 VVR16P01
RETURN FILTERS	With bypass valve	ELIXIR° RFEX060-080-110-160	BEA15HA50P01 BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01		BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01
	Without bypass valve	ELIXIR* RFEX060-080-110-160	BEA20HA50P01 BEM20HA41P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01		BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01
	With bypass valve	MPFX-MPTX-MPF-MPT - bypass 1.75 bar MPH - bypass 1.75 bar RF2250 - RF2350 - bypass 1.75 bar	BEA15HA50P01 BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01		BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01
	With bypass valve	MPFX-MPTX-MPF-MPT - bypass 3 bar MPH - bypass 2.5 bar FRI 255 RF2250 - RF2350 - bypass 3 bar	BEA20HA50P01 BEM20HA41P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01		BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01
	MPLX FRI 025 -	040 - 100 - 250 - 630 - 850	DEA20xA50P01 DEM20xA10P01 DEM20xA20P01 DEM20xA30P01 DEM20xA35P01	DLA20xA51P01 DLA20xA52P01 DLA20xA71P01 DLE20xA50P01 DLE20xF50P01	DTA20xF70P01	DVA20xP01 DVM20xP01
RETURN / SUCTION FILTERS	Suction line	MRSX 116 - 165 - 166	VEB21AA50P01	VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01		VVB16P01 VVS16P01
	Return line	MRSX 116 - 165 - 166 LMP 124 MULTIPORT	BEA25HA50P01 BEM25HA41P01 BET25HF10P01 BET25HF30P01 BET25HF50P01	BLA25HA51P01 BLA25HA52P01 BLA25HA53P01 BLA25HA71P01		BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01
SPIN-ON FILTERS	Suction line	MPS 050 - 070 - 100 - 150 MPS 200 - 250 - 300 - 350	VEB21AA50P01	VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01		VVB16P01 VVS16P01
	Return line	MPS 050 - 070 - 100 - 150 MPS 200 - 250 - 300 - 350	BEA15HA50P01 BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01		BVA14P01 BVR14P01 BVP20HP01 BVQ20HP01
	In-line	MPS 051 - 071 - 101 - 151 MPS 301 - 351 MSH 050 - 070 - 100 - 150	DEA12xA50P01 DEM12xAxxP01	DLA12xA51P01 DLA12xA52P01 DLA12xA71P01 DLE12xA50P01 DLE12xF50P01 DLE20xF50P01 DLE20xF50P01	DTA12xA70P01 DTA12xF70P01 DTA20xA70P01 DTA20xF70P01	DVA12xP01 DVM12xP01

QUICK REFERENCE GUIDE

		INGINDICATORIS	,				
Filter family	Filter series		Electrical indicator	Electrical / Visual indicator	Electronic indicator	Visual indicator	Hazardous area electronic indicator
LOW & MEDIUM PRESSURE FILTERS	With bypass valve	ELIXIR° LFEX060-080-110-160	DES25HA10P01 DES25HA30P01 DES25HA80P01			DVS25HP01	
	Without bypass valve	ELIXIR° LFEX060-080-110-160	DES40HA10P01 DES40HA30P01 DES40HA80P01			DVS40HP01	
	With bypass valve	LMP 110 - 112 - 116 - 118 - 119 MULTIPORT LMP 120 - 122 - 123 MULTIPORT LMP 210 - 211 - LDP LMP 400 - 401 & 430 - 431 LMP 900 - 901 LMP 902 - 903 LMP 950 - 951 LMP 952 - 953 - 954 LMD 211 - 400 - 401 - 431 - 951 - LDD	DEA20xA50P01 DEM20xAxxP01	DLA20xA51P01 DLA20xA52P01 DLA20xA71P01 DLE20xA50P01 DLE20xF50P01	DTA20xF70P01	DVS25HP01 DVS40HP01 DVA20xP01 DVM20xP01	
	Without bypass valve	LMP 110 - 112 - 116 - 118 - 119 MULTIPORT LMP 120 - 122 - 123 MULTIPORT LMP 210 - 211 - LDP LMP 400 - 401 & 430 - 431 LMP 900 - 901 LMP 902 - 903 LMP 950 - 951 LMP 952 - 953 - 954 LMD 211 - 400 - 401 - 431 - 951 - LDD	DEA50xA50P01 DEM50xAxxP01	DLA50xA51P01 DLA50xA52P01 DLA50xA71P01 DLE50xA50P01 DLE50xF50P01	DTA50xF70P01	DVA50xP01 DVM50xP01	
HIGH PRESSURE FILTERS	With bypass valve	FMP 039 - 065 - 135 - 320 FHP 010 - 011 - 065 - 135 - 350 - 500 FMM 050 - 150 FHA 051 FHM 006 - 007 - 010 - 050 - 065 - 135 - 320 - 500 FHB 050 - 065 - 135 - 320 FHF 325 FHD 021 - 051 - 326 - 333	DEA50xA50P01 DEM50xAxxP01	DLA50xA51P01 DLA50xA52P01 DLA50xA71P01 DLE50xA50P01 DLE50xF50P01	DTA50xF70P01	DVA50xP01 DVM50xP01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01 DEH70xA48P01 DEH70xA49P01 DEH70xA70P01
	Without bypass valve	FMP 039 - 065 - 135 - 320 FHP 010 - 011 - 065 - 135 - 350 - 500 FMM 050 - 150 FHA 051 FHM 006 - 007 - 010 - 050 - 065 - 135 - 320 - 500 FHB 050 - 065 - 135 - 320 FHF 325 FHD 021 - 051 - 326 - 333	DEA70xA50P01 DEM70xAxxP01 DEA95xA50P01 DEM95xAxxP01	DLA70xA51P01 DLA70xA52P01 DLA70xA71P01 DLE70xA50P01 DLE70xF50P01 DLA95xA51P01 DLA95xA52P01 DLE95xA50P01 DLE95xF50P01	DTA70xF70P01 DTA95xF70P01	DVA70xP01 DVM70xP01 DVA95xP01 DVM95xP01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01 DEH70xA48P01 DEH70xA49P01 DEH70xA70P01
STAINLESS STEEL HIGH PRESSURE FILTERS	With bypass valve	FZH 010 - 011 - 039 FZP 039 - 136 FZX 011 FZB 039 FZM 039 FZD 051	DEX50xA50P01	DLX50xA51P01 DLX50xA52P01		DVX50xP01 DVY50xP01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01 DEH70xA48P01 DEH70xA49P01 DEH70xA70P01
		FZH 010 - 011 - 039 FZP 039 - 136 FZB 039 FZM 039 FZD 010 - 021 - 051	DEX70xA50P01 DEX95xA50P01	DLX70xA51P01 DLX70xA52P01 DLX95xA51P01		DVX70xP01 DVY70xP01 DVX95xP01 DVY95xP01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01 DEH70xA48P01 DEH70xA49P01 DEH70xA70P01

All data, details and words contained in this publication are provided for information purposes only.

MP Filtri reserves the right to make modifications to the models and versions of the described products at any time for both technical and / or commercial reasons.

The colors and the pictures of the products are purely indicative. Any reproduction, partial or total, of this document is strictly forbidden.

All rights are strictly reserved.

WORLDWIDE NETWORK

HEADQUARTERS

MP Filtri S.p.A.

Pessano con Bornago Milano Italy sales@mpfiltri.com

BRANCH OFFICES

ITALFILTRI LLC

Moscow Russia mpfiltrirussia@yahoo.com

MP Filtri Canada Inc.

Concord, Ontario Canada sales@mpfiltricanada.com

MP Filtri France SAS

Lyon AURA France sales@mpfiltrifrance.com

MP Filtri Germany GmbH

St. Ingbert Germany sales@mpfiltri.de

MP Filtri India Pvt. Ltd.

Bangalore India sales@mpfiltri.co.in

MP Filtri (Shanghai) Co., Ltd.

Shanghai P.R. China sales@mpfiltrishanghai.com

MP Filtri U.K. Ltd.

Bourton on the Water Gloucestershire United Kingdom sales@mpfiltri.co.uk

MP Filtri U.S.A. Inc.

Quakertown, PA U.S.A. sales@mpfiltriusa.com

PASSION TO PERFORM

