

CONTAMINATION CONTROL SOLUTIONS

A WORLDWIDE LEADER IN THE FIELD OF HYDRAULIC FILTRATION EQUIPMENT.

Our company started life in 1964, when Bruno Pasotto decided to attempt to cater for the requests of a market still to be fully explored, with the study, design, development, production and marketing of a vast range of filters for hydraulic equipment, capable of satisfying the needs of manufacturers in all sectors. The quality of our products, our extreme competitiveness compared with major international producers and our constant activities of research, design and development has made us a worldwide leader in the field of hydraulic circuit filtering. Present for over 50 years in the market, we have played a truly decisive role in defining our sector, and by now we are a group capable of controlling our entire chain of production, monitoring all manufacturing processes to guarantee superior quality standards and to provide concrete solutions for the rapidly evolving needs of customers and the market.

CONTAMINATION CONTROL SOLUTIONS

1 page	INTRODUCTION
4	COMPANY PROFILE
8	PRODUCT RANGE
11	CONTAMINATION MANAGEMENT

(18) page		CONTAMINATION MONITORING PRODUCTS
21	LPA3	Portable Laser Particle Analyzer
27	LPA2 Aviation Edition	Twin Laser Particle Analyser
33	CML4	Compact Portable Contamination Monitor
39	ICM 4.0	In-line Contamination Monitor - WiFi technology integrated
45	ICM 2.0	In-line Contamination Monitor
51	AZ2	ATEX Fluid Contamination Monitors
57	ICU	In-line Contamination Monitoring Unit
63	ACMU	Auxiliary Contamination Monitoring Unit
69	BS110 & BS500	Bottle Samplers
78	HOW SAMPLING	
81	PIK - Patch Imaging Kit	Patch Sampling and Digital Imaging Kit
84	FLUID COMPATIBILITY CHARTS	
88	SPARE PARTS LIST	
93	ACCESSORIES	

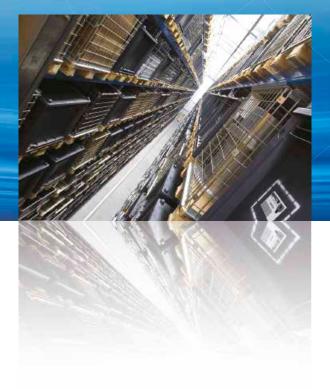
100 page		MOBILE FILTRATION UNITS
103	UFM 015	Mobile filtration unit 15 I/min flow rate
113	UFM 041	Mobile filtration unit 34 I/min flow rate
119	UFM 051	Mobile filtration unit 50 I/min flow rate
125	UFM 091	Mobile filtration unit 90 I/min flow rate
131	UFM 181	Mobile filtration unit 180 l/min flow rate
137	UFM 919	Mobile filtration unit 90 I/min and 180 I/min flow rate
143	FTU 080	Fluid transfer unit 15 I/min flow rate

WORLDWIDE PRESENCE

Our foreign Branches enable us to offer a diversified range of products that allow us to successfully face the aggressive challenge of international competition, and also to maintain a stable presence at a local level.

The Group boasts 10 business branches

TECHNOLOGY


Our constant quest for excellence in quality and technological innovation allows us to offer only the best solutions and services for applications in many fields, including general industry, test rigs, lubrication, heavy engineering, renewable energies, naval engineering, offshore engineering, aviation systems, emerging technologies and mobile plant (i.e. tractors, excavators, concrete pumps, platforms).

AND PRODUCTION

Our high level of technological expertise means we can rely entirely on our own resources, without resorting to external providers. This in turn enables us to satisfy a growing number of customer requests, also exploiting our constantly updated range of machines and equipment, featuring fully-automated workstations capable of 24-hour production.

SUCTION **FILTERS**

Flow rates up to 875 l/min

Mounting:

- Tank immersed
- In-Line
- In tank with shut off valve
- In tank with flooded suction

RETURN FILTERS

Flow rates up to 3000 l/min

Pressure

up to 20 bar

Mounting:

- In-Line
- Tank top
- In single and duplex designs

RETURN / SUCTION **FILTERS**

Flow rates up to 300 l/min

Pressure up to 80 bar

Mounting:

- In-Line
- Tank top

SPIN-ON **FILTERS**

Flow rates up to 365 l/min

Pressure up to 35 bar

Mounting:

- In-Line
- Tank top

LOW & MEDIUM PRESSURE **FILTERS**

Flow rates up to 3000 I/min

Pressure up to 80 bar

Mounting:

- In-Line
- Parallel manifold version
- In single and duplex designs

HIGH **PRESSURE FILTERS**

Flow rates up to 750 l/min

Pressure from 110 bar up to 560 bar

Mounting:

- In-Line
- Manifold
- In single
- and duplex designs

PRODUCT RANGE

MP Filtri can offer a vast and articulated range of products for the global market, suitable for all industrial sectors using hydraulic equipment.

This includes filters (suction, return, return/suction, spin-on, pressure, stainless steel pressure, ATEX filters) and structural components (motor/pump bell-housings, transmission couplings, damping rings, foot brackets, aluminium tanks, cleaning covers).

We can provide all the skills and solutions required by the modern hydraulics industry to monitor contamination levels and other fluid conditions.

Mobile filtration units and a full range of accessories allow us to supply everything necessary for a complete service in the hydraulic circuits.

STAINLESS STEEL HIGH PRESSURE FILTERS

Flow rates up to 150 l/min

Pressure from 320 bar up to 1000 bar

Mounting:

- In-Line
- Manifold
- In single and duplex designs

FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE

Flow rates up to 154 l/min

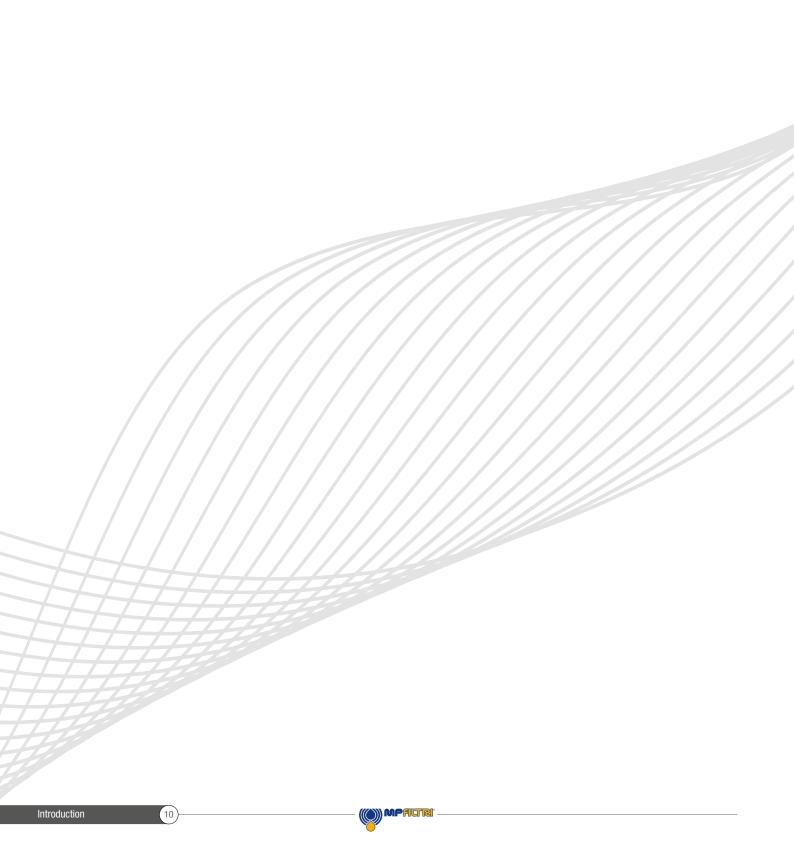
Pressure from 420 bar up to 1000 bar

Mounting:

- In-Line

CONTAMINATION CONTROL SOLUTIONS

- Off-line, in-line particle counters
- Off-line bottle sampling products
- Fully calibrated using relevant ISO standards
- A wide range of variants to support fluid types and communication protocols
- Mobile Filtration Units with flow rates from 15 I/min up to 200 I/min


POWER TRANSMISSION PRODUCTS

- Aluminium bell-housings for motors from 0.12 kW to 400 kW
- Couplings in Aluminium Cast Iron - Steel
- Damping rings
- Foot bracket
- Aluminium tanks
- Cleaning covers

TANK ACCESSORIES

- Oil filler and air breather plugs
- Optical and electrical level gauges
- Pressure gauge valve selectors
- Pipe fixing brackets
- Pressure gauges

Contamination management

INDEX

	Pag
1 HYDRAULIC FLUIDS	12
2 FLUIDS CONTAMINATION	12
3 EFFECTS OF CONTAMINATION ON HYDRAULIC COMPONENTS	12
4 MEASURING THE SOLID CONTAMINATION LEVEL	13
5 RECOMMENDED CONTAMINATION CLASSES	16
MATED IN HYDDAHII IC AND I HIDDICATING ELLIIDS	1.

1 HYDRAULIC FLUIDS

The fluid is the vector that transmits power, energy within an oleodynamic circuit. In addition to transmitting energy through the circuit, it also performs additional functions such as lubrication, protection and cooling of the surfaces.

The classification of fluids used in hydraulic systems is coded in many regulatory references, different Standards.

The most popular classification criterion divides them into the following families:

MINERAL OILS

Commonly used oil deriving fluids.

- FIRE RESISTANT FLUIDS

Fluids with intrinsic characteristics of incombustibility or high flash point.

SYNTHETIC FLUIDS

Modified chemical products to obtain specific optimized features.

- ECOLOGICAL FLUIDS

Synthetic or vegetable origin fluids with high biodegradability characteristics.

The choice of fluid for an hydraulic system must take into account several parameters.

These parameters can adversely affect the performance of an hydraulic system, causing delay in the controls, pump cavitation, excessive absorption, excessive temperature rise, efficiency reduction, increased drainage, wear, jam/block or air intake in the plant.

The main properties that characterize hydraulic fluids and affect their choice are:

- DYNAMIC VISCOSITY

It identifies the fluid's resistance to sliding due to the impact of the particles forming it.

KINEMATIC VISCOSITY

It is a widespread formal dimension in the hydraulic field.

It is calculated with the ratio between the dynamic viscosity and the fluid

Kinematic viscosity varies with temperature and pressure variations.

VISCOSITY INDEX

This value expresses the ability of a fluid to maintain viscosity when the temperature changes.

A high viscosity index indicates the fluid's ability to limit viscosity variations by varying the temperature.

- FILTERABILITY INDEX

It is the value that indicates the ability of a fluid to cross the filter materials. A low filterability index could cause premature clogging of the filter material.

- WORKING TEMPERATURE

Working temperature affects the fundamental characteristics of the fluid. As already seen, some fluid characteristics, such as cinematic viscosity, vary with the temperature variation.

When choosing a hydraulic oil, must therefore be taken into account of the environmental conditions in which the machine will operate.

COMPRESSIBILITY MODULE

Every fluid subjected to a pressure contracts, increasing its density. The compressibility module identifies the increase in pressure required to cause a corresponding increase in density.

HYDROLYTIC STABILITY

It is the characteristic that prevents galvanic pairs that can cause wear in the plant/system.

- ANTIOXIDANT STABILITY AND WEAR PROTECTION

These features translate into the capacity of a hydraulic oil to avoid corrosion of metal elements inside the system.

- HEAT TRANSFER CAPACITY

It is the characteristic that indicates the capacity of hydraulic oil to exchange heat with the surfaces and then cool them.

2 FLUID CONTAMINATION

Whatever the nature and properties of fluids, they are inevitably subject to contamination. Fluid contamination can have two origins:

- INITIAL CONTAMINATION

Caused by the introduction of contaminated fluid into the circuit, or by incorrect storage, transport or transfer operations.

- PROGRESSIVE CONTAMINATION

Caused by factors related to the operation of the system, such as metal surface wear, sealing wear, oxidation or degradation of the fluid, the introduction of contaminants during maintenance, corrosion due to chemical or electrochemical action between fluid and components, cavitation. The contamination of hydraulic systems can be of different nature:

- SOLID CONTAMINATION

For example rust, slag, metal particles, fibers, rubber particles, paint particles

- or additives

- LIQUID CONTAMINATION

For example, the presence of water due to condensation or external infiltration or acids

- GASEOUS CONTAMINATION

For example, the presence of air due to inadequate oil level in the tank, drainage in suction ducts, incorrect sizing of tubes or tanks.

(3) EFFECTS OF CONTAMINATION ON HYDRAULIC **COMPONENTS**

Solid contamination is recognized as the main cause of malfunction, failure and early degradation in hydraulic systems. It is impossible to delete it completely, but it can be effectively controlled by appropriate devices.

CONTAMINATION IN PRESENCE OF LARGE TOLERANCES

CONTAMINATION IN PRESENCE OF NARROW TOLERANCES

Solid contamination mainly causes surface damage and component wear.

- SURFACE EROSION

Cause of leakage through mechanical seals, reduction of system performance, variation in adjustment of control components, failures.

- ADHESION OF MOVING PARTS
 Cause of failure due to lack of lubrication.
- DAMAGES DUE TO FATIGUE Cause of breakdowns and components breakdown.

ADHESION

FATIGUE

Liquid contamination mainly results in decay of lubrication performance and protection of fluid surfaces.

DISSOLVED WATER

- INCREASING FLUID ACIDITY
 Cause of surface corrosion and premature fluid oxidation
- GALVANIC COUPLE AT HIGH TEMPERATURES
 Cause of corrosion

FREE WATER - ADDITIONAL EFFECTS

- DECAY OF LUBRICANT PERFORMANCE
 Cause of rust and sludge formation, metal corrosion and increased solid contamination
- BATTERY COLONY CREATION

 Cause of worsening in the filterability feature
- ICE CREATION AT LOW TEMPERATURES
 Cause damage to the surface
- ADDITIVE DEPLETION
 Free water retains polar additives

Gaseous contamination mainly results in decay of system performance.

- CUSHION SUSPENSION

 Cause of increased noise and cavitation.
- FLUID OXIDATION

 Cause of corrosion acceleration of metal parts.

- MODIFICATION OF FLUID PROPERTIES (COMPRESSIBILITY MODULE, DENSITY, VISCOSITY) Cause of system's reduction of efficiency and of control.

It is easy to understand how a system without proper contamination management is subject to higher costs than a system that is provided.

MAINTENANCE Maintenance activities, spare parts, machine stop costs

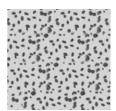
- ENERGY AND EFFICIENCY
Efficiency and performance reduction due to friction, drainage, cavitation.

(4) MEASURING THE SOLID CONTAMINATION LEVEL

The level of contamination of a system identifies the amount of contaminant contained in a fluid.

This parameter refers to a unit volume of fluid.

The level of contamination may be different at different points in the system. From the information in the previous paragraphs it is also apparent that the level of contamination is heavily influenced by the working conditions of the system, by its working years and by the environmental conditions.


What is the size of the contaminating particles that we must handle in our hydraulic circuit?

MINIMUM DIMENSION VISIBLE WITH HUMAN EYES (40 µm)

DIMENSION IN A HYDRAULIC CIRCUIT (4-14 µm)

TYPICAL CONTAMINANT

Contamination level analysis is significant only if performed with a uniform and repeatable method, conducted with standard test methods and suitably calibrated equipment.

To this end, ISO has issued a set of standards that allow tests to be conducted and express the measured values in the following ways.

- GRAVIMETRIC LEVEL - ISO 4405

The level of contamination is defined by checking the weight of particles collected by a laboratory membrane. The membrane must be cleaned, dried and desiccated, with fluid and conditions defined by the Standard.

The volume of fluid is filtered through the membrane by using a suitable suction system. The weight of the contaminant is determined by checking the weight of the membrane before and after the fluid filtration.

CLEAN MEMBRANE

CONTAMINATED MEMBRANE

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE - ISO 4406

The level of contamination is defined by counting the number of particles of certain dimensions per unit of volume of fluid. Measurement is performed by Automatic Particle Counters (APC).

Following the count, the contamination classes are determined, corresponding to the number of particles detected in the unit of fluid.

The most common classification methods follow ISO 4406 and SAE AS 4059 (Aerospace Sector) regulations.

NAS 1638 is still used although obsolete.

Classification example according to ISO 4406

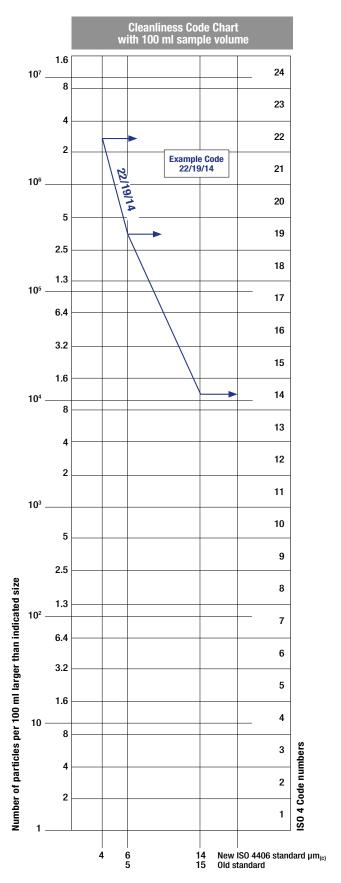
The International Standards Organisation standard ISO 4406 is the preferred method of quoting the number of solid contaminant particles in a sample.

The code is constructed from the combination of three scale numbers selected from the following table.

The first number represents the number of particles that are larger than 4 umm.

The second number represents the number of particles larger than 6 μ m_(c). The third scale number represents the number of particles in a millilitre sample of the fluid that are larger than 14 μ m_(c).

ISO 4406 - Allocation of Scale Numbers


Class	Number of particles per ml				
	Over	Up to			
28	1 300 000	2 500 000			
27	640 000	1 300 000			
26	320 000	640 000			
25	160 000	320 000			
24	80 000	160 000			
23	40 000	80 000			
22	20 000	40 000			
21	10 000	20 000			
20	5 000	10 000			
19	2 500	5 000			
18	1 300	2 500			
17	640	1 300			
16	320	640			
15	160	320			
14	80	160			
13	40	80			
12	20	40			
11	10	20			
10	5	10			
9	2.5	5			
8	1.3	2.5			
7	0.64	1.3			
6	0.32	0.64			
5	0.16	0.32			
4	0.08	0.16			
3	0.04	0.08			
2	0.02	0.04			
1	0.01	0.02			
0	0	0.01			

> $4 \mu m_{(c)} = 350 \text{ particles}$ > $6 \mu m_{(c)} = 100 \text{ particles}$ > $14 \mu m_{(c)} = 25 \text{ particles}$ 16 / 14 / 12

ISO 4406 Cleanliness Code System

Microscope counting examines the particles differently to APCs and the code is given with two scale numbers only.

These are at 5 μ m and 15 μ m equivalent to the 6 μ m_(c) and 14 μ m_(c) of APCs.

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE - SAE AS 4059-1 and SAE AS 4059-2

Classification example according to

SAE AS4059 - Rev. E and SAE AS4059-2 - Rev. F

The code, prepared for the aerospace industry, is based on the size, quantity, and particle spacing in a 100 ml fluid sample. The contamination classes are defined by numeric codes, the size of the contaminant is identified by letters (A-F).

SAE AS4059 - REV. E

It can be made a differential measurement (Table 1) or a cumulative measurement (Table 2)

Table 1 - Class for differential measurement

Class	Dimension of contaminant Maximum Contamination Limits per 100 ml					
	6-14 μm _(c)	14-21 μm _(c)	21-38 μm _(c)	38-70 μm _(c)	>70 µm _(c)	
00	125	22	4	1	0	
0	250	44	8	2	0	
1	500	89	16	3	1	
2	1 000	178	32	6	1	
3	2 000	356	63	11	2	
4	4 000	712	126	22	4	
5	8 000	1 425	253	45	8	
6	16 000	2 850	506	90	16	
7	32 000	5 700	1 012	180	32	
- 8	64 000	11 400	2 025	360	64	
9	128 000	22 800	4 050	720	128	
10	256 000	45 600	8 100	1 440	256	
11	512 000	91 200	16 200	2 880	512	
12	1 024 000	182 400	32 400	5 760	1 024	

6 - 14 μ m_(c) = 15 000 particles 14 - 21 μ m_(c) = 2 200 particles 21 - 38 μm_(c) = 200 particles $38 - 70 \, \mu m_{(c)} =$ SAE AS4059 REV E - Class 6

Table 2 - Class for cumulative measurement

Class	Dimension of contaminant Maximum Contamination Limits per 100 ml						
	>4 µm _(c)	>6 µm _(c)	>14 µm _(c)	>21 µm _(c)	>38 µm _(c)	>70 µm _(c)	
000	195	76	14	3	1	0	
00	390	152	27	5	1	0	
0	780	304	54	10	2	0	
1	1 560	609	109	20	4	1	
2	3 120	1 217	217	39	7	1	
3	6 250	2 432	432	76	13	2	
4	12 500	4 864	864	152	26	4	
5	25 000	9 731	1 731	306	53	8	
6	50 000	19 462	3 462	612	106	16	
7	100 000	38 924	6 924	1 224	212	32	
8	200 000	77 849	13 849	2 449	424	64	
9	400 000	155 698	27 698	4 898	848	128	
10	800 000	311 396	55 396	9 796	1 696	256	
11	1 600 000	622 792	110 792	19 592	3 392	512	
12	3 200 000	1 245 584	221 584	39 184	6 784	1 024	

 $> 4 \mu m_{(c)} = 45 000 \text{ particles}$ $> 6 \mu m_{(c)} = 15 000 \text{ particles}$ $> 14 \, \mu m_{(c)} = 1500 \, particles$ $> 21 \mu m_{(c)} =$ 250 particles SAE AS4059 REV E 6A/6B/5C/5D/4E/2F

The information reproduced on this page is a brief extract from SAE AS4059 Rev.E, revised in May 2005. For further details and explanations refer to the full Standard.

SAE AS4059 - REV. F

It can be made a differential measurement (Table 1) or a cumulative measurement (Table 2)

Table 1 - Class for differential measurement

Class	Dimension of contaminant Maximum Contamination Limits per 100 ml						
	5-15 μm	15-25 μm	25-50 μm	50-100 μm	>100 µm	(1)	
	6-14 μm _(c)	14-21 μm _(c)	21-38 μm _(c)	38-70 μm _(c)	>70 µm _(c)	(2)	
00	125	22	4	1	0		
0	250	44	8	2	0		
1	500	89	16	3	1		
2	1 000	178	32	6	1	-	
3	2 000	356	63	11	2		
4	4 000	712	126	22	4		
5	8 000	1 425	253	45	8		
6	16 000	2 850	506	90	16		
7	32 000	5 700	1 012	180	32		
8	64 000	11 400	2 025	360	64		
9	128 000	22 800	4 050	720	128		
10	256 000	45 600	8 100	1 440	256		
11	512 000	91 200	16 200	2 880	512	_	
12	1 024 000	182 400	32 400	5 760	1 024	-	

6 - 14 μ m_(c) = 15 000 particles 14 - 21 μ m_(c) = 2 200 particles 21 - 38 μ m_(c) = 200 particles 38 - 70 μm_(c) SAE AS4059 REV F - Class 6

(1) Size range, microscope particle counts, based on longest dimension as measured per AS598 or ISO 4407.
(2) Size range, APC calibrated per ISO 11171 or an optical or electron microscope

with image analysis software, based on projected area equivalent diameter. (3) Contamination classes and particle count limits are identical to NAS 1638.

Table 2 - Class for cumulative measurement

Class	Dimension of contaminant Maximum Contamination Limits per 100 ml						
	>1 μm >5 μm >15 μm >25 μm >50 μm				>100 µm	(1)	
	>4 µm _(c)	>6 µm _(c)	>14 µm _(c)	>21 µm _(c)	>38 µm _(c)	>70 µm _(c)	(2)
000	195	76	14	3	1	0	
00	390	152	27	5	1	0	
0	780	304	54	10	2	0	
1	1 560	609	109	20	4	1	
2	3 120	1 217	217	39	7	1	
3	6 250	2 432	432	76	13	2	
4	12 500	4 864	864	152	26	4	
5	25 000	9 731	1 731	306	53	8	
6	50 000	19 462	3 462	612	106	16	
7	100 000	38 924	6 924	1 224	212	32	
8	200 000	77 849	13 849	2 449	424	64	
9	400 000	155 698	27 698	4 898	848	128	
10	800 000	311 396	55 396	9 796	1 696	256	
11	1 600 000	622 792	110 792	19 592	3 392	512	
12	3 200 000	1 245 584	221 584	39 184	6 784	1 024	

 $> 4 \mu m_{(c)} = 45 000 \text{ particles}$ $> 6 \mu m_{(c)} = 15 000 \text{ particles}$ $> 14 \, \mu m_{(c)} = 1500 \, particles$ 250 particles SAE AS4059 REV F cpc* Class 6 6/6/5/5/4/2

* cumulative particle count

(1) Size range, optical microscope, based on longest dimension as measured per AS598 or ISO $4407.\,$

(2) Size range, APC calibrated per ISO 11171 or an optical or electron microscope with image analysis software, based on projected area equivalent diameter.

- CLASSES OF CONTAMINATION ACCORDING TO NAS 1638 (January 1964)

The NAS system was originally developed in 1964 to define contamination classes for the contamination contained within aircraft components.

The application of this standard was extended to industrial hydraulic systems simply because nothing else existed at the time.

The coding system defines the maximum numbers permitted of 100 ml volume at various size intervals (differential counts) rather than using cumulative counts as in ISO 4406. Although there is no guidance given in the standard on how to quote the levels, most industrial users quote a single code which is the highest recorded in all sizes and this convention is used on MP Filtri APC's.

The contamination classes are defined by a number (from 00 to 12) which indicates the maximum number of particles per 100 ml, counted on a differential basis, in a given size bracket.

Size Range Classes (in microns)

Maximum Contamination Limits per 100 ml					
Class	5-15	15-25	25-50	50-100	>100
00	125	22	4	1	0
0	250	44	8	2	0
1	500	89	16	3	1
2	1 000	178	32	6	1
3	2 000	356	63	11	2
4	4 000	712	126	22	4
5	8 000	1 425	253	45	8
6	16 000	2 850	506	90	16
7	32 000	5 700	1 012	180	32
8	64 000	11 400	2 025	360	64
9	128 000	22 800	4 050	720	128
10	256 000	45 600	8 100	1 440	256
11	512 000	91 200	16 200	2 880	512
12	1 024 000	182 400	32 400	5 760	1 024

5 - 15 µm = 42 000 particles 15 - 25 µm = 2 200 particles 25 - 50 µm = 150 particles 50 - 100 µm = 18 particles > 100 µm = 3 particles Class NAS 8

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE - ISO 4407

The level of contamination is defined by counting the number of particles collected by a laboratory membrane per unit of fluid volume. The measurement is done by a microscope. The membrane must be cleaned, dried and desiccated, with fluid and conditions defined by the Standard. The fluid volume is filtered through the membrane, using a suitable suction system.

The level of contamination is identified by dividing the membrane into a predefined number of areas and by counting the contaminant particles using a suitable laboratory microscope.

SAE AS4059E Table 2

COMPARISON PHOTOGRAPH'S 1 graduation = 10µm

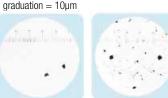


Fig. 1 Fig. 2

Class 16/14/11 Class 22/20/17

Class 5 Class 11

Class 5 Class 11

Class 12A/11B/11C

For other comparison photographs for contamination classes see the "Fluid Condition and Filtration Handbook".

Class 6A/5B/5C

- CLEANLINESS CODE COMPARISON

Although ISO 4406 standard is being used extensively within the hydraulics industry other standards are occasionally required and a comparison may be requested. The table below gives a very general comparison but often no direct comparison is possible due to the different classes and sizes involved.

ISO 4406	SAE AS4059 Table 2	SAE AS4059 Table 1	NAS 1638
> 4 μm _(c) 6 μm _(c) 14 μm _(c)	> 4 μm _(c) 6 μm _(c) 14 μm _(c)	4-6 6-14 14-21 21-38 38-70 >70	5-15 15-25 25-50 50-100 >100
23 / 21 / 18	13A / 12B / 12C	12	12
22 / 20 / 17	12A / 11B / 11C	11	11
21 / 19 / 16	11A / 10B / 10C	10	10
20 / 18 / 15	10A / 9B / 9B	9	9
19 / 17 / 14	9A / 8B / 8C	8	8
18 / 16 / 13	8A / 7B / 7C	7	7
17 / 15 / 12	7A / 6B / 6C	6	6
16 / 14 / 11	6A / 5B / 5C	5	5
15 / 13 / 10	5A / 4B / 4C	4	4
14 / 12 / 09	4A / 3B / 3C	3	3

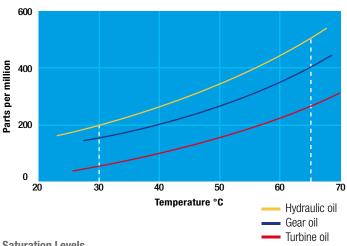
(5) RECOMMENDED CONTAMINATION CLASSES

The table below, gives a selection of maximum contamination levels that are typically issued by component manufacturer.

These relate to the use of the correct viscosity mineral fluid. An even cleaner level may be needed if the operation

is severe, such as high frequency fluctuations in loading, high temperature or high failure risk.

		1	1	1	1	
Piston pumps						
with fixed flow rate	•					
Piston pumps						
with variable flow rate			-			
Vane pumps						
with fixed flow rate		•				
Vane pumps						
with variable flow			•			
Engines	•					
Hydraulic cylinders	•					
Actuators					•	
Test benches						•
Check valve	•					
Directional valves	•					
Flow regulating valves	•					
Proportional valves				•		
Servo-valves					•	
Flat bearings			•			
Ball bearings				•		
ISO 4406 CODE	20/18/15	19/17/14	18/16/13	17/15/12	16/14/11	15/13/10
Recommended	B _{20(c)}	B _{15(c)}	B _{10(c)}	B _{7(c)}	B _{7(c)}	B _{5(c)}
filtration Bx(c)≥1.000	>1000	>1000	>1000	>1000	>1000	>1000

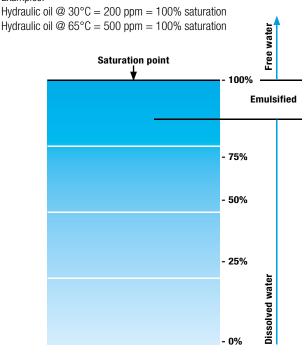

6 WATER IN HYDRAULIC AND LUBRICATING FLUIDS

Water Content

In mineral oils and non aqueous resistant fluids water is undesirable. Mineral oil usually has a water content of 50-300 ppm (@40°C) which it can support without adverse consequences.

Once the water content exceeds about 300 ppm the oil starts to appear hazy. Above this level there is a danger of free water accumulating in the system in areas of low flow. This can lead to corrosion and accelerated wear.

Similarly, fire resistant fluids have a natural water which may be different to mineral oil.



Saturation Levels

Since the effects of free (also emulsified) water is more harmful than those of dissolved water, water levels should remain well below the saturation point.

However, even water in solution can cause damage and therefore every reasonable effort should be made to keep saturation levels as low as possible. There is no such thing as too little water. As a guideline, we recommend maintaining saturation levels below 50% in all equipment.

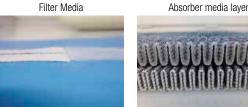
TYPICAL WATER SATURATION LEVEL FOR NEW OILS Examples:

W - Water and Temperature Sensing

"W" option, in MP Filtri Contamination Monitoring Products, indicates water content as a percentage of saturation and oil temperature in degrees centigrade. 100% RH corresponds to the point at which free water can exist in the fluid. i.e. the fluid is no longer able to hold the water in a dissolved solution.

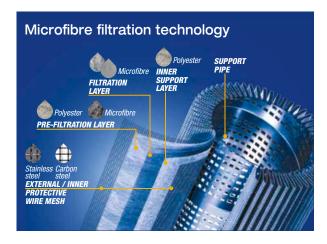
The sensor can help provide early indication of costly failure due to free water, including but not exclusive to corrosion, metal surface fatigue e.g. bearing failure, reduced lubrication & load carrying characteristics.

Different oils have different saturation levels and therefore RH (relative humidity) % is the best and most practical measurement.


Water absorber

Water is present everywhere, during storage, handling and servicing.

MP Filtri filter elements feature an absorbent media which protects hydraulic systems from both particulate and water contamination.


MP Filtri's filter element technology is available with inorganic microfiber media with a filtration rating 25 µm (therefore identified with media designation WA025, providing absolute filtration of solid particles to $B_{X(C)} = 1000$).

Absorbent media is made by water absorbent fibres which increase in size during the absorption process. Free water is thus bonded to the filter media and completely removed from the system (it cannot even be squeezed out).

Fabric that absorbs water

The Filter Media has absorbed water

By removing water from your fluid power system, you can prevent such key problems as:

- corrosion (metal etching)
- loss of lubricant power
- accelerated abrasive wear in hydraulic components
- valve-locking
- bearing fatigue
- viscosity variance (reduction in lubricating properties)
- additive precipitation and oil oxidation
- increase in acidity level
- increased electrical conductivity (loss of dielectric strength)
- slow/weak response of control systems

Product availability - UFM Series: UFM 041 - UFM 051 - UFM 091 - UFM 181 - UFM 919

You can see right through our results

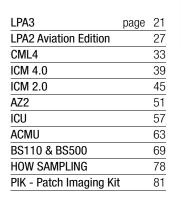
It's no secret the presence of particles in the hydraulic fluid is the primary cause of failure, unreliability and short component life in hydraulic systems - whether they be fluid power, lubrication or fuel. We have developed an extensive range of products to help you safeguard your machines and systems from potential failure.

Benefits:

- Promptly measures and maintains the appropriate fluid cleanliness level
- Damages and downtime are minimised, reducing costs
- Provides a maintenance regime to immediately respond to an incident

Applications:

- Industrial hydraulic and lubrication systems
- Mobile hydraulics



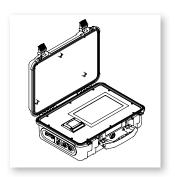
Contamination Monitoring Products

Sampling Analysis Kit

FLUID COMPATIBILITY CHARTS	page	85
SPARE PARTS LIST		88
ACCESSORIES		93

LPA3

Portable Laser Particle Analyzer



Description

Portable Laser Particle Analyzer

MP Filtri's new LPA3 is the most advanced portable particle counter in the world. Whether you are working in the lab or in the field, the LPA3 delivers a fast, accurate and comprehensive hydraulic health check in a robust yet portable

Its real-time monitoring and predictive maintenance technology safeguards machinery, enhances performance and productivity, and reduces costs and unplanned downtime. Featuring the latest breakthroughs in optical and photodiode technology, the new LPA3 enhances the reliability and longevity of complex hydraulic systems and is ideal for quality control in in-house manufacturing applications. The LPA3 is compatible with the full range of Bottle Samplers.

> Features & Benefits

- Online/realtime monitoring
- Comprehensive hydraulic health check
- Proactive maintenance capabilities
- High-speed sample times
- Programmable 10.1" (25.6cm) touchscreen display
- Perfectly portable at just 10kg
- Programmable sample volumes
- Precision Instrument
- Live trend analysis option
- Measures and displays the following international standard formats; ISO 4406, NAS 1638, AS 4059E&F, GBT 14039, GJB420B
- Moisture and temperature sensing
- Data logging and enhanced 4000 test result memory
- Key performance information at a glance
- LPA View software (included)
- Ideal for hydraulic, lubrication, and subsea fluids
- Integrated printer
- Full accessories kit included
- Long-life Lithium Ion battery

Scope of Supply

- 1 x LPA3 (*)
- 1 x M16x2 microbore pressure hose, 1500 mm long, pouch
- 1 x 2000 mm quick release waste hose for LPA3 and pouch
- 1 x 1L waste receptacle
- 1 x Power Lead c/w UK/EU/US/AUS/CN heads
- 1 x USB cable
- 1 x Digital USB copy of user guides/software/drivers
- 2 x Hard copy of calibration certificate
- 5 x Thermal printer paper
- 1 x Carry bag

(*) Specific model will be as per ordered item

See Accessories at page 93

Front facing view

Closed case Front facing view

Technical data

Technology

High precision LED light extinction automatic optical particle counter

Particle Sizing

 $>4, 6, 14, 21, 25, 38, 50, 70 \mu m_{(c)}$

Analysis range

ISO 4406 Codes 8 to 24 NAS 1638 Class 2 to 12

AS4059/ISO 11218 Rev E, Table 1 Size Codes 2-12

AS4059/ISO 11218 Rev E, Table 2 Size Codes, A: 000 TO 12, B: 00 to 12,

C: 00 to 12, D: 2 to 12, E: 4-12, F: 7 to 12 AS4059 Rev F, Table 1 Size Codes 2-12 AS4059 Rev F, Table 2 Size Codes cpc

[000 to 12, 00 to 12, 00 to 12, 2 to 12, 4 to 12, 7 to 12]

GBT14039 Codes 8-24

GJB420B Size Codes, A: 000 to 12, B: 00 to 12, C: 00 to 12,

D: 2 to 12, E: 4-12, F: 7 to 12

Please Note: Lower Limits are Test Volume dependent

Accuracy

 \pm 1/2 ISO code for 4, 6, 14 μ m_(c) \pm 1 code for 21, 25, 38, 50, 70 μ m_(c)

Calibration

Individually calibrated with ISO Medium Test Dust (MTD) based on ISO 11171, on equipment certified by I.F.T.S to ISO 11943

Viscosity range

Up to 400 cSt

Fluid temperature

Minimum: +5 °C Maximum: +80 °C

Ambient temperature

Minimum: -10 °C Maximum: +80 °C

Pressure

Minimum: 2.0 bar / 29 psi

Maximum: 420 bar / 6092 psi static

Sample Volume

Maximum 100 ml / 3.38 fl oz per pump stroke.

Test time

Test volumes programmable by end user.

Pre-set volumes also available.

Moisture Sensing % RH (Relative Humidi

% RH (Relative Humidity) $\pm 3\%$

Temperature Measurement

±3°C

Data Storage

Approximately 4000 timestamped tests in the integral LPA3 memory

System Pressure Measurement

± 0.5% Full Scale Accuracy Min 10 bar

Communication options

2 USB output ports

1 x USB B type for direct connection to PC and software

1 x USB A type for direct data download to USB memory stick

Environmental Protection

IP66 (Lid closed) IP54 (Lid open)

Weight / Dimensions

10 kg, Height (not inc handle) 350 mm, Depth 170 mm, Width 470 mm

Supply Voltage

18 - 19VDC

Power

Long-life Lithium Ion internal rechargeable battery (mains charger)

Software

LPA View software (included)

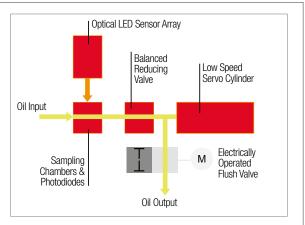
LPA3 is supplied with a full software package and digital product information

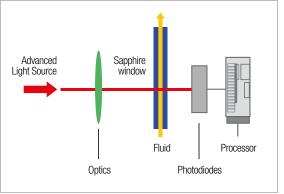
How LPA3 works - www.mpfiltri.com/index.php/products/oil-service/lpa-3.html

FOCUS ON

Exclusive MP Filtri technology

Featuring the latest breakthroughs in LED and photodiode technology, the LPA3 delivers increased accuracy combined with excellent repeatability.

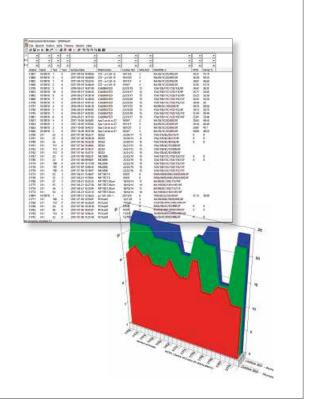

W-Option


Water Saturation level (RH%) and fluid temperature sensor option.

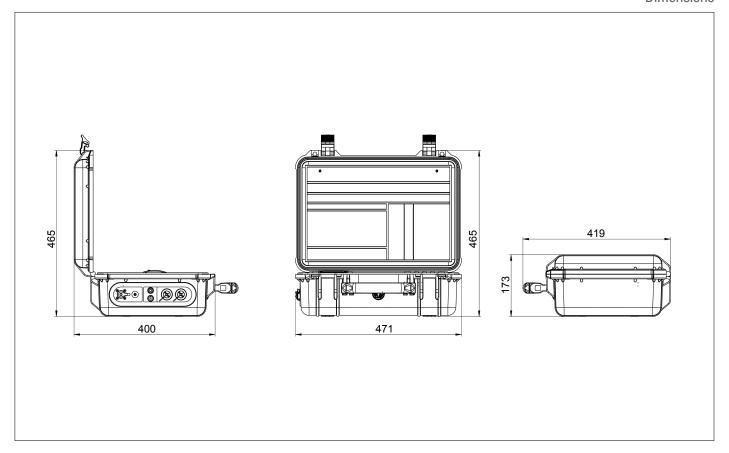
Live Pressure Readout (bar/PSI) on display screen.

LED light source

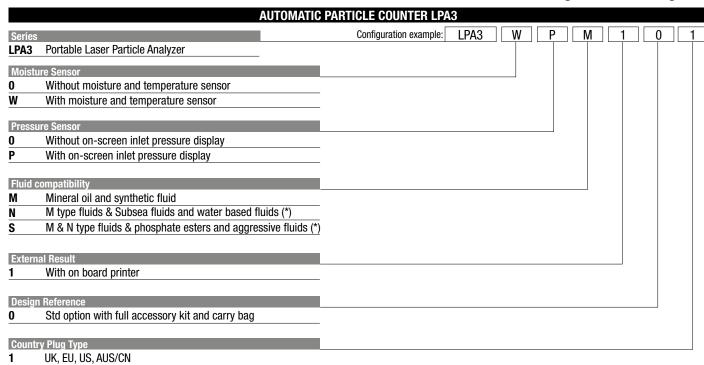
A single point high accuracy LED measures particles across all sizes giving increased accuracy with excellent repeatability.



LPA View Software


The LPA View software is used with the LPA3, LPA2, CML2, CML4 and ICM particle counters. When connected to LPA View, MP Filtri CMPs can transfer results in realtime, or alternatively, historical results can be downloaded from the CMP's inbuilt memory.

- Runs on Windows XP, 7, and Windows 10
- Full adjustment & control of product settings, test times and alarms
- Easy test report generation
- Trend analysis
- Graphical display options
- Universal format across our contamination monitoring product range



Dimensions

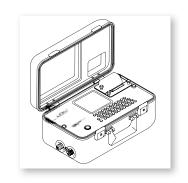
Designation & Ordering code

(*) ${\bf N}$ and ${\bf S}$ version, moisture sensor (W) not available

Available with Screen Protector (Part number 63.095000). Consult your local branch for further details

LPA2 Aviation Edition

Twin Laser Particle Analyser


2 GENERAL INFORMATION

AVIATION EDITION

Description

Twin Laser Particle Analyser - LPA20PSTA30

The Airbus-approved LPA2 Aviation Edition is a highly precise, lightweight & fully portable instrument that has been created exclusively for the Aviation industry. It can automatically measure and display particulate contamination, moisture and temperature levels in various hydraulic fluids. The LPA2 can be connected to the MP range of bottle sampler products to enable laboratory based particle counting. The LPA2 is a solution for online monitoring of contamination in your hydraulic fluid, providing an immediate hydraulic health check. It employs predictive maintenance procedures to help reduce downtime and in turn costs.

> Features & Benefits

- Airbus-approved
- LPA2 saves time: online/realtime monitoring
- Immediate hydraulic health check
- Predictive maintenance procedures can be employed
- Reduced downtime for MRO teams
- Reduced costs associated with downtime
- The lightest machine in its class
- Fully portable
- Precision Instrument
- Full Calibration based on ISO11171
- Measures and displays the following international standard formats; ISO 4406, NAS 1638, AS 4059E
- Moisture and temperature sensing
- Data logging and 600 test result memory
- Manual and remote control flexibility
- Full size QWERTY keyboard
- Various test programme settings
- Full accessories kit included
- Internal rechargeable battery capable of performing 100 tests between charges

Scope of Supply

- 1 x LPA2 (Model: LPA20PSTA030)
- 1 x Airbus sampling valve adapter* and C spanner
- 1 x M16x2 microbore pressure hose, 2500mm long

(For the Airbus Sampling Adaptor)

- 1 x EN6123-04 to M16x2 microbore pressure hose 2500mm long (compatible with A350 sampling valve)
- 1 x 1L waste receptacle
- 1 x 12V, 2A power adapter c/w UK/EU/US/AUS/CN heads
- 1 x 9 pin serial cable
- 1 x USB to serial converter
- 1 x 3 pin socket for external signals
- 1 x Hard copy of product user guide
- 1 x Digital copy of user guides/software/drivers
- 2 x Hard copy of calibration certificate
- 2 x Thermal printer paper
- 1 x Carry bag
- 1 x Airbus Operator's Guide

(*) Specific model will be as per ordered item See Accessories page 93.

GENERAL INFORMATION LPA2

AVIATION EDITION

Technical data

Technology

Twin laser and twin optical diode detectors Based Light Extinction Automatic Optical Particle Analyser

Particle Sizing

>4,6,14,21,25,38,50,70 $\mu m_{(c)}$ to ISO 4406 Standard

Analysis range

ISO 4406 Codes 8 to 24 NAS 1638 Class 2 to 12

AS4059/ISO 11218 Rev E, Table 1 Size Codes 2-12

AS4059/ISO 11218 Rev E, Table 2 Size Codes, A: 000 TO 12, B: 00 to 12,

C: 00 to 12, D: 2 to 12, E: 4-12, F: 7 to 12 AS4059 Rev F, Table 1 Size Codes 2-12 AS4059 Rev F, Table 2 Size Codes cpc

[000 to 12, 00 to 12, 00 to 12, 2 to 12, 4 to 12, 7 to 12]

GBT14039 Codes 8-24

GJB420B Size Codes, A: 000 to 12, B: 00 to 12, C: 00 to 12,

D: 2 to 12, E: 4-12, F: 7 to 12

Please Note: Lower Limits are Test Volume dependent

Accuracy

Better than 3% typical

Calibration

Each unit individually calibrated with ISO Medium Test Dust (MTD) based on ISO 11171, on equipment certified by I.F.T.S. to ISO 11943

Viscosity range

Up to 400 cSt

Fluid temperature

Minimum: +5 °C Maximum: +80 °C

Ambient Temperature

Minimum: -10 °C Maximum: +80 °C

Pressure Max

400 bar / 5800 psi (gauge)

Minimum 2.0 bar / 29 psi (gauge) required

Sample Volume / Test time

8 ml. (short): 2:50- Recommended for set up only

15 ml. (normal): 5:00 30 ml. (dynamic): 10:00 24 ml. (bottle sampler): 8:00 15 ml. (continuous): 5:00

Moisture Sensing

% RH (Relative Humidity) ±3%

Temperature Measurement

±3%

Data Storage

Up to 600 tests

Communication options

RS232 9 pin D plug

System Pressure Measurement

± 0.5% Full Scale Accuracy Min 10 bar

Environmental Protection

IP51 (lid open)

Weight / Dimensions

LPA2:

9.8 kg, Height 218 mm, Depth 268 mm, Width 436 mm

LPA2 Aviation Edition with travel case - packed:

18.5 kg, Height 500 mm, Length 600 mm, Width 400 mm

Supply Voltage

9-36VDC

Power

Internal rechargeable battery (mains charger)

Outer Casing Finish

Anodised Aluminium

Wetted parts

S - 316 stainless steel, perfluoro elastomer, sapphire, EPDM

Software

LPA View software (included)

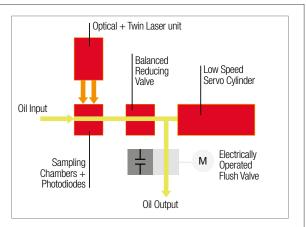
LPA2 is supplied with a full software package and digital product information

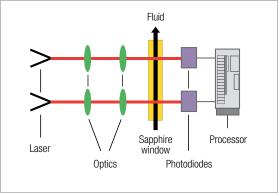
AVIATION EDITION

FOCUS ON

Exclusive MP Filtri technology

The combination of the two lasers with a unique optics and photodiode package enables the LPA2 to give increased accuracy combined with excellent repeatability.

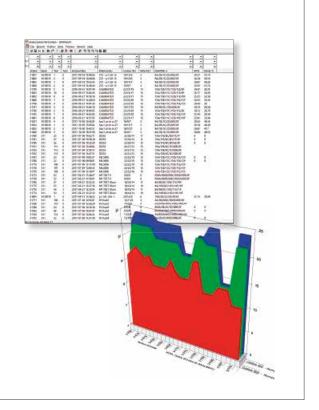

Live Pressure Readout (bar) on display screen.


Laser 1

A single point high accuracy laser measures particles of contamination at $4 \mu m_{(c)}$ and 6 µm(c) giving increased accuracy with excellent repeatability.

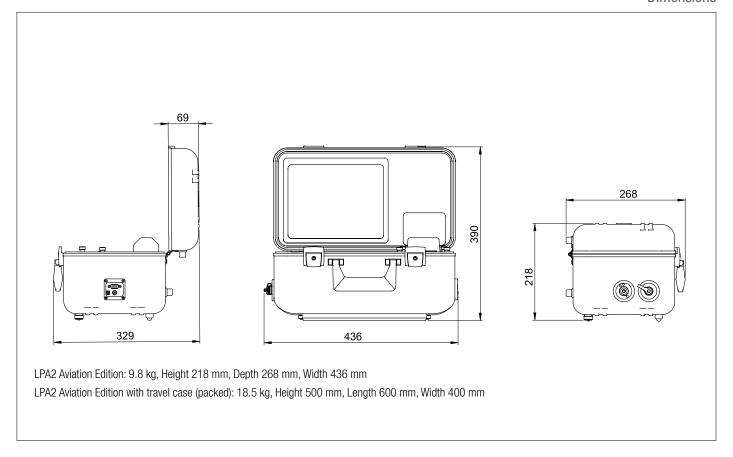
Laser 2

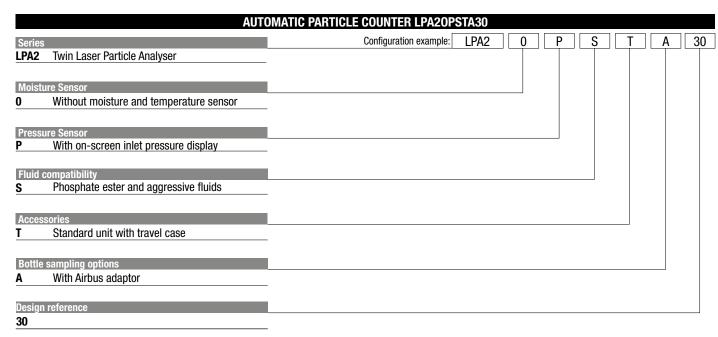
Standard accuracy laser specifically designed for system contaminants between 6 µm_(c) and 70 µm_(c).



LPA View Software

The LPA View software is used with the LPA3, LPA2, CML2, CML4 and ICM particle counters. When connected to LPA View, MP Filtri CMPs can transfer results in realtime, or alternatively, historical results can be downloaded from the CMP's inbuilt memory.


- Runs on Windows XP, 7, and Windows 10
- Full adjustment & control of product settings, test times and alarms
- Easy test report generation
- Trend analysis
- Graphical display options
- Universal format across our contamination monitoring product range



AVIATION EDITION

Dimensions

Designation & Ordering code

CML4

Compact Portable Contamination Monitor

Description

Compact Portable Contamination Monitor - CML4W0M001

A compact and portable contamination monitor that delivers a fast, accurate assessment of contamination in the field and is the perfect solution for the mobile, construction and plant hire sectors. Easy to master, the new CML4 features cutting-edge contamination control technology to anyone wishing to protect their critical systems.

The CML4 features a metering pump which enables analysis of both 'live' and unpressurised systems, delivering comprehensive contamination checks on any machine in any condition.

> Features & Benefits

- High-resolution 7" (178 mm) touchscreen display
- Real-time contamination results at-a-glance
- High-speed sample times
- Predictive maintenance enabled
- Unpressurised and pressurised sampling up to 350 bar
- Fully portable at just 8.5 kg
- Precision Instrument
- Easy to master operators can get up and running in minutes
- Measures and displays the following international standard formats: ISO 4406, NAS 1638, AS 4059E&F Tables 1 and 2, ISO 11218, GBT 14039, GJB 420B, GOST 17216
- Moisture and temperature sensing
- Data logging and 4000 test result memory
- CMP View software (included on Data stick)
- Bluetooth printer (optional equipment)
- Full accessories kit included
- Work-all-day battery that can handle up to 140 tests on a single charge

Scope of Supply

- 1 x CML4 (Model: CML4W0M001)
- 1 x M16 x 2 Microbore pressure hose, 1500 mm long + pouch
- 1 2000 mm Quick release waste hose + pouch
- 1 x 1L Waste container
- 1 x Power cable and regional adaptors (UK/EU/US/CN/AUS) (Plug type dependent on order specification)
- 1 x USB Stick with digital copies of product user guides, CMP View software, accessory products, drivers and product brochures
- 2 x Hard copy certificate of calibration
- 1 x 1500 mm guick-release offline hose and pouch (Low pressure)
- 1 x USB C to USB A cable

See Accessories at page 93

Front facing view

Closed case Right facing view

Right facing view

Closed case Left facing view

Technical data

Technology

High precision LED light extinction automatic optical contamination monitor

Particle Sizing

 $>4, >6, >14, >21, >25, >38, >50, >70 \mu m_{(c)}$

Analysis range

ISO 4406 NAS 1638

AS4059 Rev E, Table 1 AS4059 Rev E, Table 2 AS4059 Rev F, Table 1 AS4059 Rev F, Table 2

GBT 14039 GJB 420 B GOST 17216

Accuracy

 \pm 1/2 ISO code for 4, 6, 14 $\mu m_{(c)}$ ± 1 code for larger sizes

Calibration

Calibrated with ISOMTD in accordance with ISO 21018 Part 1 and Part 4

Viscosity range

Up to 400 cSt

Fluid temperature

Minimum: +5 °C Maximum: +80 °C

Ambient Temperature

Minimum: -10 °C Maximum: +60 °C

Pressure

Offline: Maximum 2.0 bar / 29 psi Online: Maximum 350 bar / 5076 psi

Moisture Sensing

% RH (Relative Humidity) ±3%

Temperature Measurement

±3°C

Data Storage

Up to 4000 tests

Environmental Protection

IP65 (Lid closed) - IP54 (Lid open)

Weight / Dimensions

8.5 kg (unit only)

Height 149 mm (not including handle), Depth 155 mm, Width 350 mm

Power

Lithium-lon rechargeable battery

Battery Life

Up to 8hrs

Software

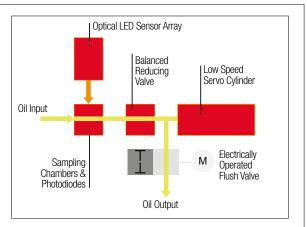
CMP View (Provided)

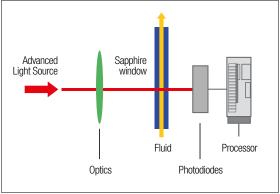
CML4 is supplied with a full software package

and digital product information

FOCUS ON

Exclusive MP Filtri technology


Featuring the latest breakthroughs in LED and photodiode technology, the CML4 delivers outstanding accuracy combined with exceptional repeatability

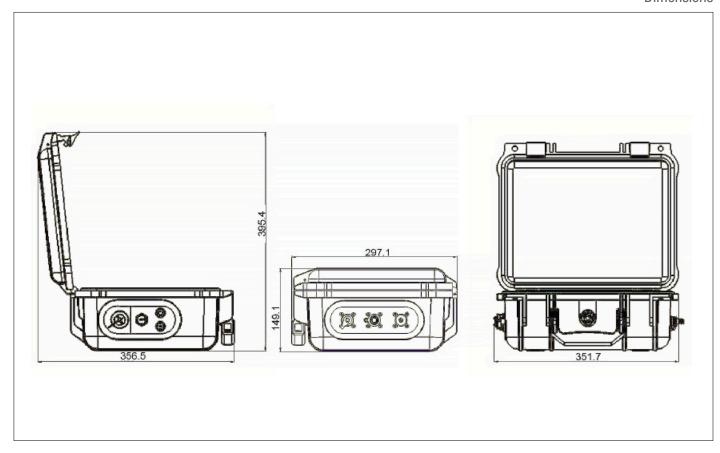

W-Option

Water Saturation level (RH%) and fluid temperature sensor option.

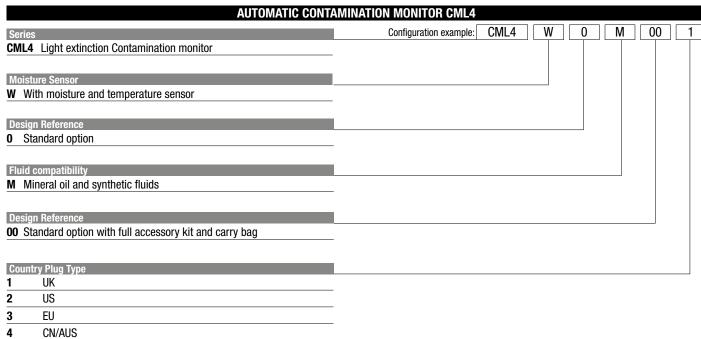
LED light source

A single point high accuracy LED measures particles across all sizes.

CMP View Software

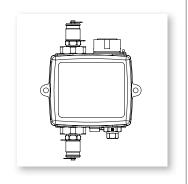

Our new CMP View software is used with the LPA3, LPA2 (Aviation Edition), CML2, CML4 and ICM contamination monitors.

When connected to CMP View, MP Filtri CMP devices can transfer results in realtime, or alternatively, historical results can be downloaded from each device's in-built memory.


- Runs on Windows XP, 7, and Windows 10
- Included free with CMP Products
- Brand new design, created in-house for ease of use
- Comprehensive functionality
- Can be mastered quickly without the need for formal training
- Key results and data available at-a-glance
- Full adjustment and control of product settings, test times and alarms
- Easy test report generation
- Full trend analysis
- Universal format across our contamination monitoring product range
- Multi-machine monitoring

Designation & Ordering code

ICM 4.0


In-Line Contamination Monitor - WiFi technology integrated

In-Line Contamination Monitor - WiFi technology integrated

The ICM 4.0 automatically measures and displays particulate contamination, moisture and temperature levels in various hydraulic fluids.

It is designed specifically to be mounted directly to systems, where ongoing measurement or analysis is required, and where space and costs are limited.

> Features & Benefits

- Integrated WiFi
- Mobile APP
- 8 channel contamination measurement & display
- Measures and displays the following international standard formats: ISO 4406, NAS 1638, AS 4059E
- Moisture and temperature sensing fluid dependent
- Data logging and 4000 test result memory
- Manual, automatic and remote control flexibility
- Multicolour indicators via LCD (K versions) and LED with output alarm signals as standard
- Robust die cast aluminium construction
- LPA View software (included)
- Pressure max. 420 bar
- Environmental protection IP65/67 versatile
- Secondary connector to allow the simultaneous control/download of results during operation
- 4-20mA analogue output as standard

Scope of Supply

- 1 x ICM 4.0 (Specific model will be as per ordered item)
- 1 x 3m Twisted Pair Cable Assembly
- 1 x Hard copy Quick start/wiring installation guide
- 1 x Hard copy Fluid Condition Handbook
- 1 x Digital copy of user guides/software/drivers
- 1 x Hard copy of calibration certificate

See Accessories at page 93

Status LED

All ICM 4.0 versions have a multicolour indicator on the front panel, which is used to indicate the status or alarm state.

ICM-K versions also have a screen that changes colour.

The alarm thresholds can be set from LPA-View via the serial interface.

Screen and multicolor indicators

- Green indicates that the test result passed, i.e. none of the alarm thresholds were exceeded
- Yellow indicates that the lower cleanliness limit was exceeded, but not the upper one
- Red indicates that the upper clean liness limit was exceeded
- Blue indicates that the upper water content limit was exceeded
- Red/Blue Alternating indicates both cleanliness and water content upper limits exceeded
- Violet indicates that the upper temperature limit was exceeded

Top view

Bottom view

Technical data

Technology

LED based Light Extinction Automatic Optical Particle Counter

Particle Sizing

>4, 6, 14, 21, 25, 38, 50, 70 μ m_(c)

Analysis range

ISO 4406 Codes 8 to 24 NAS 1638 Class 2 to 12

AS4059/ISO 11218 Rev E, Table 1 Size Codes 2-12

AS4059/ISO 11218 Rev E, Table 2 Size Codes, A: 000 TO 12, B: 00 to 12,

C: 00 to 12, D: 2 to 12, E: 4-12, F: 7 to 12 AS4059 Rev F, Table 1 Size Codes 2-12 AS4059 Rev F. Table 2 Size Codes cpc

[000 to 12, 00 to 12, 00 to 12, 2 to 12, 4 to 12, 7 to 12]

GBT14039 Codes 8-24

GJB420B Size Codes, A: 000 to 12, B: 00 to 12, C: 00 to 12,

D: 2 to 12, E: 4-12, F: 7 to 12

Please Note: Lower Limits are Test Volume dependent

Accuracy

 \pm 1/2 ISO code for 4, 6, 14 μ m_(c) \pm 1 code for 21, 25, 38, 50, 70 μ m_(c)

Calibration

Individually calibrated with ISO Medium Test Dust (MTD) based on ISO 11171, on equipment certified by I.F.T.S. ISO 11943

Operating Flow Rate

20 - 400 ml/minute

Viscosity range

Up to 1000 cSt

Fluid temperature

Minimum: -25 °C Maximum: +80 °C

Ambient Temperature

Minimum: -10 °C Maximum: +55 °C

Pressure

Minimum: 0.5 bar / 7.25 psi Maximum: 420 bar/ 6092 psi static

Test time

Adjustable 10 - 3600 seconds. Factory set to 120 seconds. Start delay & programmable test intervals available as standard

Flow rate measurement

Indicator only

Moisture Sensing

% RH (Relative Humidity) ±3%

Temperature Measurement

±3°C

Data Storage

Up to 4000 tests

Communication options

RS485, MODBUS, CANBUS, 4-20mA time multiplex as standard

Relays

Two solid state relays fitted to "R" version for output to alarm circuits

Environmental Protection

IP 65/67 versatile IK04 Impact Protection

Weight / Dimensions

1.6 kg, Height 123 mm, Depth 65 mm, Width 142 mm

Supply Voltage

9-36VDC

Power consumption

<2.2 W

Outer Casing Finish

Polyurethane BS X34B. Colour BS381-638 (Dark Sea Grey) Industry 4.0 ready with appropriate accessory product

Wetted parts

M - C46400 Cu alloy, 316 stainless steel, FPM, FR4, sapphire.

N - 316 stainless steel, FPM, sapphire.

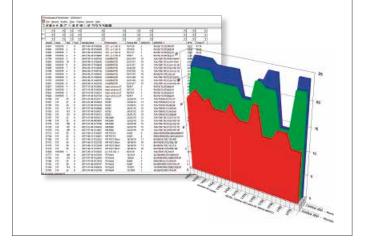
S - 316 stainless steel, perfluoro elastomer, sapphire, EPDM.

Software

LPA View software (included)

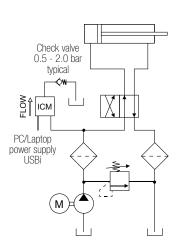
ICM 4.0 is supplied with a full software package and digital product information

Wifi Connectivity

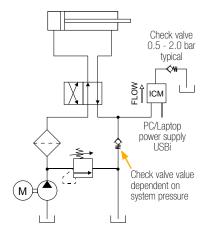

Wifi connectivity ensures you can access and share real-time data and analysis instantly via a number of different platforms.

- All connections from ICM 4.0: Modbus, Canbus, 4-20mA signal and Switched alarm relay outputs (WiFi replaces the need for the remote connector). Non-WiFi Connections also available.
- Cloud based systems: Capability to connect to customers own cloud-based systems via Modbus. User access to all ICMs on the same network, including remotely via VPN.
- Web browser readouts: Generated from the unique IP address of each ICM 4.0.
- Mobile App: Available for Apple iOS and Android devices.

LPA View Software


The LPA View software is used with the LPA3, LPA2, CML2, CML4 and ICM particle counters. When connected to LPA View, MP Filtri CMPs can transfer results in realtime, or alternatively, historical results can be downloaded from the CMP's inbuilt memory.

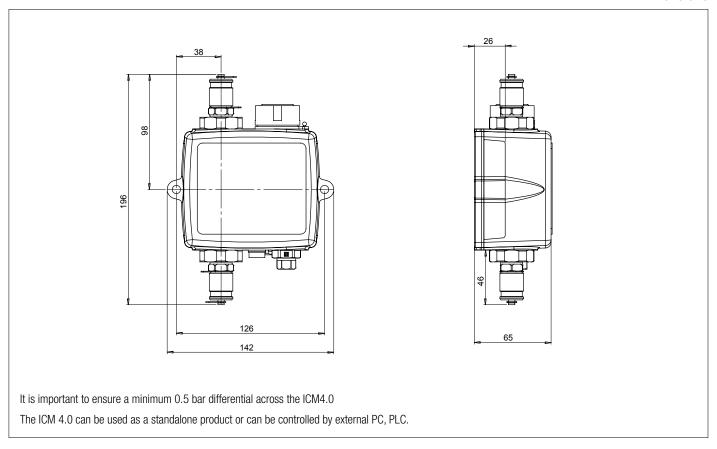
- Runs on Windows XP, 7, and Windows 10
- Full adjustment & control of product settings, test times and alarms
- Easy test report generation
- Trend analysis
- Graphical display options
- Universal format across our contamination monitoring product range

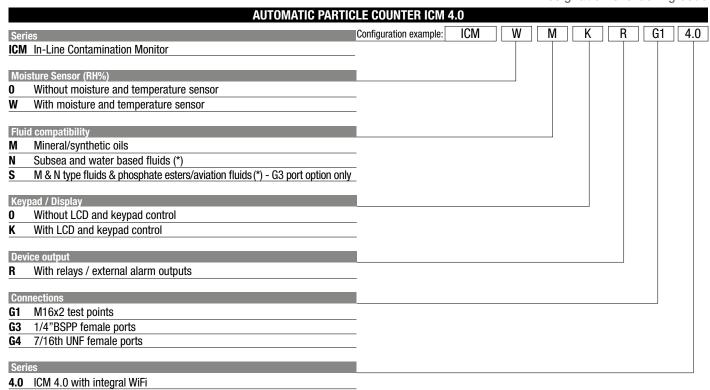


Hydraulic Circuit

TYPICAL PRESSURE LINE

TYPICAL RETURN LINE




For installation guidance please visit: www.mpfiltri.com/products/contamination-monitoring-products/icm-40-118.html#cont

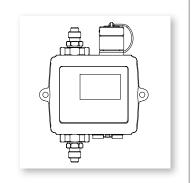
Δp 0.5 to 2.0 bar $\Delta p > 0.3$ bar ICM typical typical

Designation & Ordering code

(*) ${\bf N}$ and ${\bf S}$ version, moisture sensor (W) not available

ICM 2.0

In-Line Contamination Monitor



Contamination Monitoring Products

In-Line Contamination Monitor

The ICM 2.0 automatically measures and displays particulate contamination, moisture and temperature levels in various hydraulic fluids.

It is designed specifically to be mounted directly to systems, where ongoing measurement or analysis is required, and where space and costs are limited.

> Features & Benefits

- 8 channel contamination measurement & display
- Measures and displays the following international standard formats: ISO 4406, NAS 1638, AS 4059E
- Moisture and temperature sensing fluid dependent
- Data logging and 4000 test result memory
- Manual, automatic and remote control flexibility
- Multicolour indicators via LCD (K versions) and LED with output alarm signals as standard
- Robust die cast aluminium construction
- LPA View software (included)
- Pressure max. 420 bar
- Environmental protection IP65/67 versatile
- Secondary connector to allow the simultaneous control/download of results during operation
- Option available to download all results onto a USB stick, direct from the ICM
- 4-20mA analogue output as standard

Scope of Supply

- 1 x ICM 2.0 (Specific model will be as per ordered item)
- 1 x 3m Twisted Pair Cable Assembly
- 1 x Hard copy Quick start/wiring installation guide
- 1 x Hard copy Fluid Condition Handbook
- 1 x Digital copy of user guides/software/drivers
- 1 x Hard copy of calibration certificate

See Accessories at page 93

Status LED

All ICM 2.0 versions have a multicolour indicator on the front panel, which is used to indicate the status or alarm state. ICM-K versions also have a screen that changes colour. The alarm thresholds can be set from LPA-View via the serial interface.

Screen and multicolor indicators

- Green indicates that the test result passed, i.e. none of the alarm thresholds were exceeded
- Yellow indicates that the lower cleanliness limit was exceeded, but not the upper one
- Red indicates that the upper clean liness limit was exceeded
- Blue indicates that the upper water content limit was exceeded
- Red/Blue Alternating indicates both cleanliness and water content upper limits exceeded
- Violet indicates that the upper temperature limit was exceeded

Technical data

Technology

LED Based Light Extinction Automatic Optical Contamination Monitor

Particle Sizing

>4, 6, 14, 21, 25, 38, 50, 70 μ m_(c)

Analysis range

ISO 4406 Codes 8 to 24 NAS 1638 Class 2 to 12

AS4059/ISO 11218 Rev E, Table 1 Size Codes 2-12

AS4059/ISO 11218 Rev E, Table 2 Size Codes, A: 000 TO 12, B: 00 to 12,

C: 00 to 12, D: 2 to 12, E: 4-12, F: 7 to 12 AS4059 Rev F, Table 1 Size Codes 2-12

AS4059 Rev F. Table 2 Size Codes cpc

[000 to 12, 00 to 12, 00 to 12, 2 to 12, 4 to 12, 7 to 12]

GBT14039 Codes 8-24

GJB420B Size Codes, A: 000 to 12, B: 00 to 12, C: 00 to 12,

D: 2 to 12, E: 4-12, F: 7 to 12

Please Note: Lower Limits are Test Volume dependent

Accuracy

 \pm 1/2 ISO code for 4, 6, 14 μ m_(c) ± 1 code for 21, 25, 38, 50, 70 μ m_(c)

Calibration

Individually calibrated with ISO Medium Test Dust (MTD) based on ISO 11171, on equipment certified by I.F.T.S. ISO 11943

Operating Flow Rate

20 - 400 ml/minute

Viscosity range

Up to 1000 cSt

Fluid temperature

Minimum: -25 °C Maximum: +80 °C

Ambient Temperature

From -25 °C to +80 °C (non K version)

From -25 °C to +55 °C (K version)

Pressure

Maximum: 420 bar / 6092 psi

Test time

Adjustable 10 - 3600 seconds. Factory set to 120 seconds. Start delay & programmable test intervals available as standard

Flow rate measurement

Indicator only

Moisture Sensing

% RH (Relative Humidity) ±3%

Temperature Measurement

±3°C

Data Storage

Up to 4000 tests

Communication options

RS485, MODBUS, CANBUS, 4-20mA time multiplex as standard

Relays

Two solid state relays fitted to "R" version for output to alarm circuits

Environmental Protection

IP 65/67 versatile IK04 Impact Protection

Weight / Dimensions

1.6 kg, Height 123 mm, Depth 65 mm, Width 142 mm

Supply Voltage

9-36VDC

Power consumption

<2.2 W

Outer Casing Finish

Polyurethane BS X34B. Colour BS381-638 (Dark Sea Grey) Industry 4.0 ready with appropriate accessory product

Wetted parts

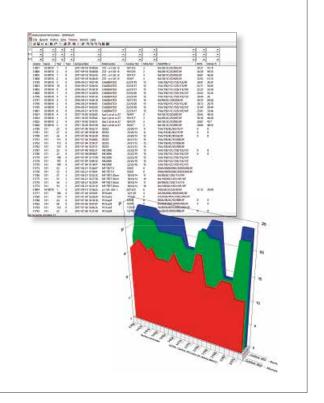
M - C46400 Cu alloy, 316 stainless steel, FPM, FR4, sapphire.

N - 316 stainless steel, FPM, sapphire.

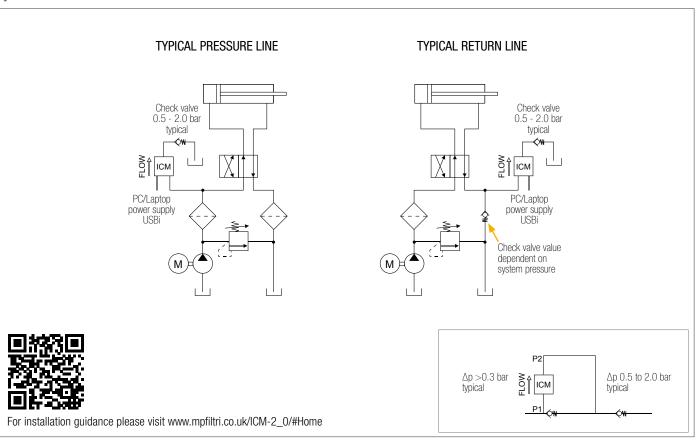
S - 316 stainless steel, perfluoro elastomer, sapphire, EPDM.

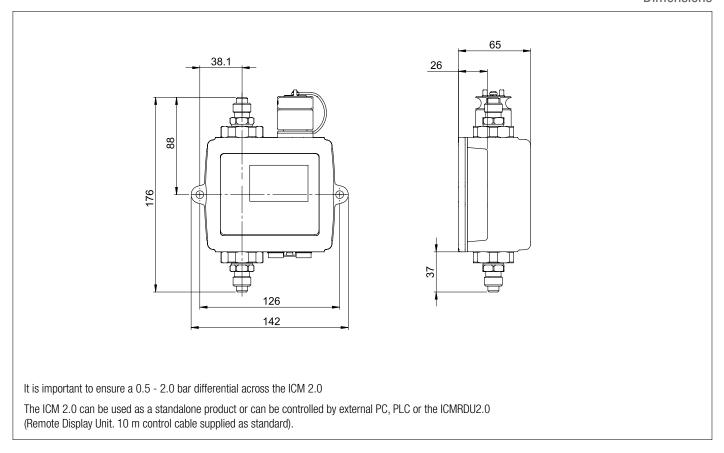
Software

LPA View software (included)

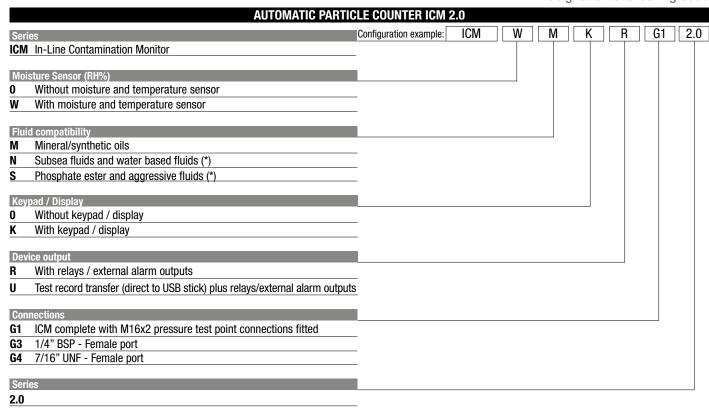

ICM 2.0 is supplied with a full software package and digital

product information


LPA View Software


The LPA View software is used with the LPA3, LPA2, CML2, CML4 and ICM particle counters. When connected to LPA View, MP Filtri CMPs can transfer results in realtime, or alternatively, historical results can be downloaded from the CMP's inbuilt memory.

- Runs on Windows XP, 7, and Windows 10
- Full adjustment & control of product settings, test times and alarms
- Easy test report generation
- Trend analysis
- Graphical display options
- Universal format across our contamination monitoring product range

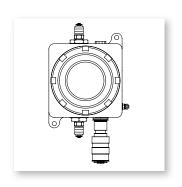


Hydraulic Circuit

Designation & Ordering code

(*) ${\bf N}$ and ${\bf S}$ version, moisture sensor (W) not available

AZ2


ATEX Fluid Contamination Monitors

(Ex) Atex Zone 2, Cat 3G, Fluid Contamination Monitors

Our AZ2 contamination monitor can automatically measure and save particulate contamination, moisture and temperature levels in various hydraulic fluids. They are designed specifically to be mounted directly to systems where ongoing measurement or analysis is required in high risk or explosive environments.

> Features & Benefits

- 8 channel contamination measurement & display
- Measures and displays the following international standard formats: ISO 4406, NAS 1638, AS 4059E
- RS485, MODBUS, CANBUS
- Moisture and temperature sensing fluid dependent
- Data logging and 4000 test result memory
- Automatic and remote control flexibility
- Multicolour indicators via onboard LED with output alarm signals as standard
- LPA View software (included)

Scope of Supply

- 1 x ICMKAZ2 (*)
- 1 x Atex approved non wired cable connector and gland
- 1 x Hard copy Fluid Condition Handbook
- 1 x Digital copy of user guides/software/drivers
- 1 x Hard copy of calibration certificate
- 1 x Hard copy of atex certificate
- (*) Specific model will be as per ordered item

See Accessories at page 93

Status LED

All AZ2 versions have a multicolour indicator on the front panel, which is used to indicate the status or alarm state. The alarm thresholds can be set from LPA-View via the serial interface and bespoke connector (available on request).

Multicolor indicators

- Green indicates that the test result passed, i.e. none of the alarm thresholds were exceeded
- Yellow indicates that the lower cleanliness limit was exceeded, but not the upper one
- Red indicates that the upper clean liness limit was exceeded
- Blue indicates that the upper water content limit was exceeded
- Red/Blue Alternating indicates both cleanliness and water content upper limits exceeded
- Violet indicates that the upper temperature limit was exceeded

Bottom facing view

Technical data

Technology

LED Based Light Extinction Automatic Optical Contamination Monitor

Particle Sizing

>4, 6, 14, 21, 25, 38, 50, 70 μ m_(c)

Analysis range

ISO 4406 Code 0 to 25 NAS 1638 Class 00 to 12

AS4059 Rev. E Table 1&2 Sizes A-F: 000 to 12

Accuracy

 \pm 1/2 ISO code for 4, 6, 14 μ m_(c) \pm 1 code for 21, 25, 38, 50, 70 μ m_(c)

Calibration

Individually calibrated with ISO Medium Test Dust (MTD) based on ISO 11171, on equivalent certified by I.F.T.S. ISO 11943

Operating Flow Rate

20 - 400 ml/minute

Viscosity range

Up to 1000 cSt

Fluid temperature

Minimum: -25 °C Maximum: +80 °C

Ambient Temperature

Minimum: -25 °C Maximum: +80 °C

Pressure

Maximum: 400 bar / 5802 psi (for high frequency pressure pulse and out range temperature applications contact MP Filtri)

Test time

Adjustable 10 - 3600 seconds. Factory set to 120 seconds. Start delay & programmable test intervals available as standard

Flow rate measurement

Indicator only

Moisture Sensing

% RH (Relative Humidity) ±3%

Temperature Measurement

±3°C

Data Storage

Up to 4000 tests

Communication options

RS485, RS232, MODBUS, CANBUS as standard

Relavs

Two solid state relays fitted to "R" version for output to alarm circuits

Environmental Protection

IP66

Weight / Dimensions

10.5 kg, Height 320 mm, Depth 130 mm, Width 186 mm

Supply Voltage

9-36VDC

Current Supply

12V - 150mA 24V - 80mA 36V - 60mA

Power consumption

< 2.2 W

Outer Casing Finish

Stainless Steel

Wetted parts

M - C46400 Cu alloy, 316 stainless steel, FPM, FR4, sapphire.

 $\ensuremath{\text{N}}$ - 316 stainless steel, FPM, sapphire.

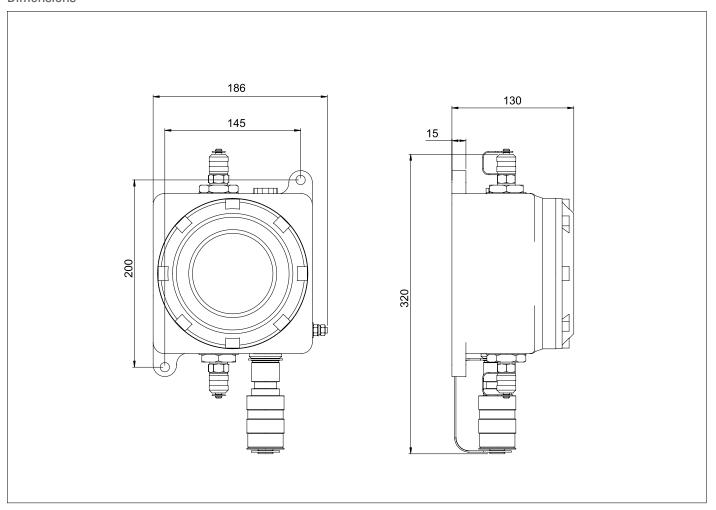
S - 316 stainless steel, perfluoro elastomer, sapphire, EPDM.

Software

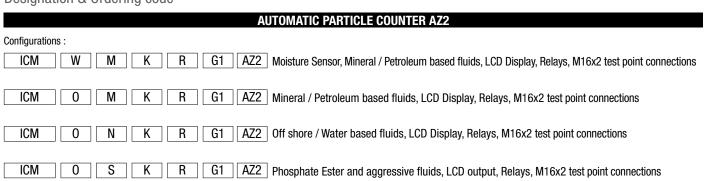
LPA View software (included)

Atex classification

CE 😉 3 G EX nR IIB T5 GC IP66


ICM AZ2 cable wiring details

MP Filtri do not supply an ATEX approved cable with the ICM AZ2 products as customers may run such cables through varying ATEX zones. Wiring diagrams supplied, please consult product user guide for full information.


Note: an adapter cable and ICMUSBi product will be required should LPA View be utilised as the control software. These accessories are only suitable for use outside of the zoned areas

AZ2 is supplied with a full software package and digital product information

Designation & Ordering code

All of MP Filtri's AZ2 products are designed to be run via PLC control & the Modbus communication protocol. Note: All units are fully compatible with and can be programmed via our bespoke windows based LPA View software.

In-line Contamination Monitoring Unit

Contamination Monitoring Products

In-line Contamination Monitoring Unit

The ICU automatically measures particulate contamination levels in various hydraulic fluids and is designed for industrial applications.

It is designed to be manifold mounted directly to systems, where ongoing measurement or analysis is required, and where space and costs are limited.

> Features & Benefits

- Manifold mounting
- 3 channel contamination measurement
- Measures ISO 4406
- Robust design and construction
- Pressure max. 350 bar
- Environmental protection IP65/67 versatile
- 4-20mA analogue output as standard

Scope of Supply

- 1 x ICU0M00G5P01
- 1 x Installation kit:
 - 4 x M6x1.0x60 mm long fixing bolts 2 x 6.50 ID x 1.5 CSD FKM o-ring seals
- 1 x Hard copy of calibration certificate

Right facing view

Front / Left facing view

Technical data

Technology

LED Based Light Extinction Automatic Optical Contamination Monitor

Particle Sizing

>4, 6, 14 $\mu m_{(c)}$

Analysis range

ISO 4406 Code 0 to 20

Accuracy

 \pm 1/2 ISO code for 4, 6, 14 μ m_(c) across the analysis range

Calibration

Individually calibrated with ISO Medium Test Dust (MTD) based on ISO 11171, on equipment certified by I.F.T.S. ISO 11943

Operating Flow Rate

200 ml/minute controlled by the built in flow control valve

Viscosity range

Up to 1000 cSt

Fluid temperature

Minimum: 0 °C Maximum: +80 °C

Ambient Temperature

Minimum: 0 °C Maximum: +60 °C

Pressure

Minimum: 25 bar / 362 psi Maximum: 350 bar / 5075 psi

Test time

Adjustable 10 - 3600 seconds

Communication options

4-20 mA time multiplex as standard

Environmental Protection

IP 65/67 versatile

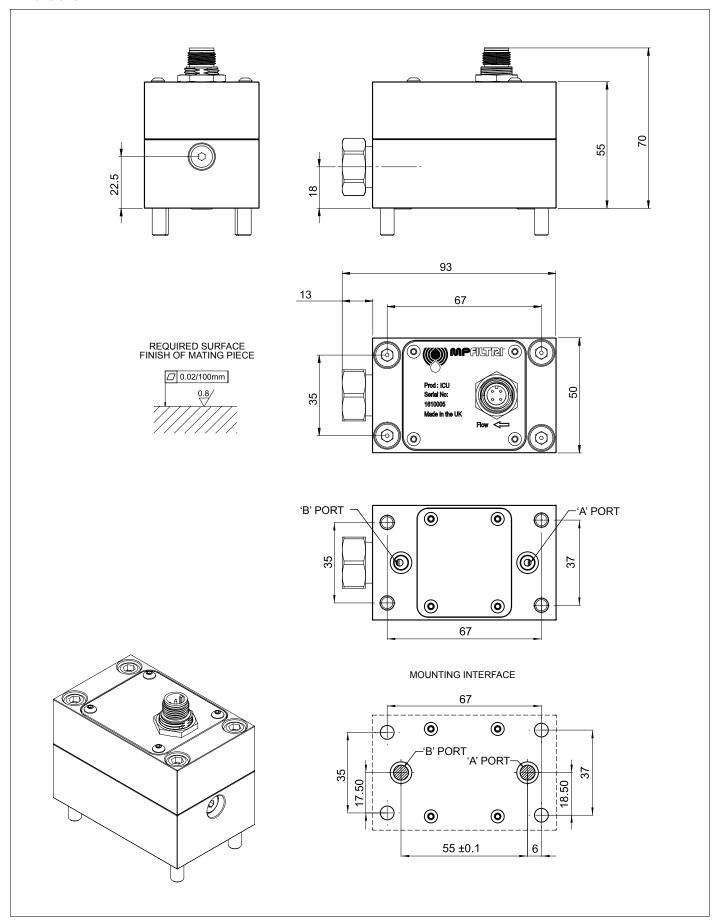
Weight / Dimensions

1.4 Kg, Height 70 mm, Depth 50 mm, Width 93 mm

Supply Voltage

24VDC ± 20%

Power consumption


< 2.2 W

Cable

Electrical cable has to be ordered separately (optional accessory), MP Filtri item no. 13.061000 - ICU Cable M12 4 pin 1.5m long

ICU is supplied with a full software package and digital product information

Designation & Ordering code

									E					

_			
ı,v	ntıa	urations	•

ICU	0	М	0	0	G5	P01
ICU	0	M	0	0	G5	Pxx

Without moisture sensor, Mineral oil, Without keypad/display, 4 to 20mA timed multiplex, Manifold mounted, Standard option $\,$

Customized version

ACMU

Auxiliary Contamination Monitoring Unit

Contamination Monitoring Products

Auxiliary Contamination Monitoring Unit

Incorporating the ICM, the ACMU is specifically designed for aerated, viscous and/or un-pressurized hydraulic/lubrication systems.

Where can it be used?

- Wind/Tidal/Wave Energy
- Gearbox applications
- Gearbox monitoring
- Offshore & ship systems
- Lubrication & Oil systems
- Mobile Equipment
- Test Benches

When should it be used?

- Entrained air or turbulent flows
- Higher viscosity fluids
- Unpressurized systems

Why should it be used?

- Easy to retro-fit
- Exceptional communication & 4000 test memory
- Reliable & accurate performance

Available versions:

- Cabinet version
- Plate version

Closed Cabinet version Front/Right facing view

Scope of supply

- 1 x ACMU (Specific model will be as per ordered item, 1/4" BSP inlet/outlet ports as standard)
- 1 x 3m Twisted Pair Cable Assembly (Plate version)
- 1 x 5m length twisted pair cable (Cabinet version)
- 2 x 1/4" BSP to 7/16 JIC coupling
- 1 x Hard copy Quick start/wiring installation guide
- 1 x Hard copy Fluid Condition Handbook
- 1 x Digital copy of user guides/software/drivers
- 1 x Hard copy of calibration certificate

See Accessories at page 93

Hydraulic Hoses (External)

Customer to source their own

Re-calibration

Defined by customer Quality Controls recommended 1 year

Plate version Front facing view

GENERAL INFORMATION ACMU

Technical data

In-Line contamination monitor

ICM with keypad and backlit display and relays

Analysis Range

ISO 4406 Codes 8 to 24 NAS 1638 Class 2 to 12

AS4059/ISO 11218 Rev E, Table 1 Size Codes 2-12

AS4059/ISO 11218 Rev E, Table 2 Size Codes, A: 000 TO 12, B: 00 to 12,

C: 00 to 12, D: 2 to 12, E: 4-12, F: 7 to 12 AS4059 Rev F, Table 1 Size Codes 2-12 AS4059 Rev F, Table 2 Size Codes cpc

[000 to 12, 00 to 12, 00 to 12, 2 to 12, 4 to 12, 7 to 12]

GBT14039 Codes 8-24

GJB420B Size Codes, A: 000 to 12, B: 00 to 12, C: 00 to 12,

D: 2 to 12, E: 4-12, F: 7 to 12

Please Note: Lower Limits are Test Volume dependent

Fluid Compatibility / Corrosion Resistance

Hydrocarbon based & Synthetic hydraulic fluids

Circuit Flow Rate

40 ml/min to 400 ml/min

Viscosity range

Max. 1000 cSt - Min. 10 cSt

Communication Options

PLC compatible. RS485, RS232 & CanBus (J1939 typical)

Fluid Temperature (Start Up)

Minimum: Viscosity dependant. Not greater than 1000 cSt

Maximum: +80 °C

Fluid Temperature (Continuous)

Minimum: Viscosity dependant. Not greater than 1000 cSt

Maximum: +80 °C

Ambient Temperature (Start Up)

Minimum: -40 °C Maximum: +50 °C

Inlet Pressure

Min. Positive pressure

Max. 50 bar / 725 psi gauge pressure (pump option dependant)

Outlet Pressure

Min. Atmosphere (1013 bar at sea level) Max. 3.0 bar / 43.5 psi (gauge pressure)

Moisture Sensing (RH%)

Available with or without moisture sensor

Weight

21 Kg (cabinet version) - 13 Kg (plate version)

Dimensions

Cabinet version:

Height 562 mm, Depth 226 mm, Width 482 mm

Plate version:

Height 410 mm, Depth 186 mm, Width 395 mm

Electric Motor

110V AC, 230V AC, 415V AC, 690V AC

Power Consumption

0.25 kW max

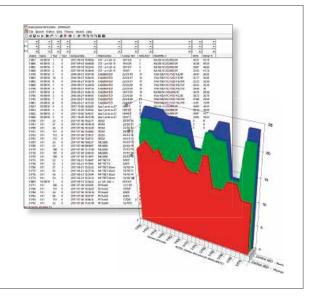
USBi Comms Junction Box

See USBi user guide - cabinet version

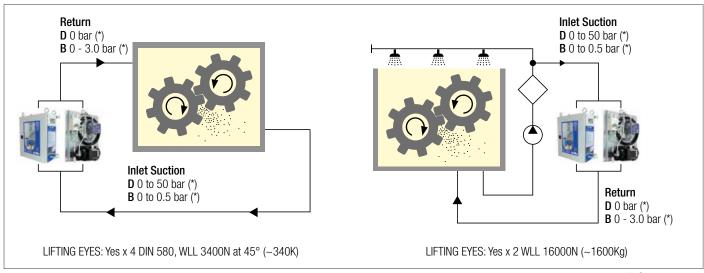
No junction box - plate version

Industry 4.0 ready with appropriate accessory product

ACMU is supplied with a full software package and digital

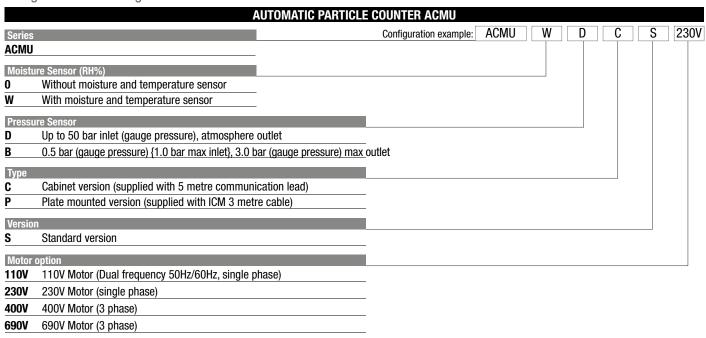

product information

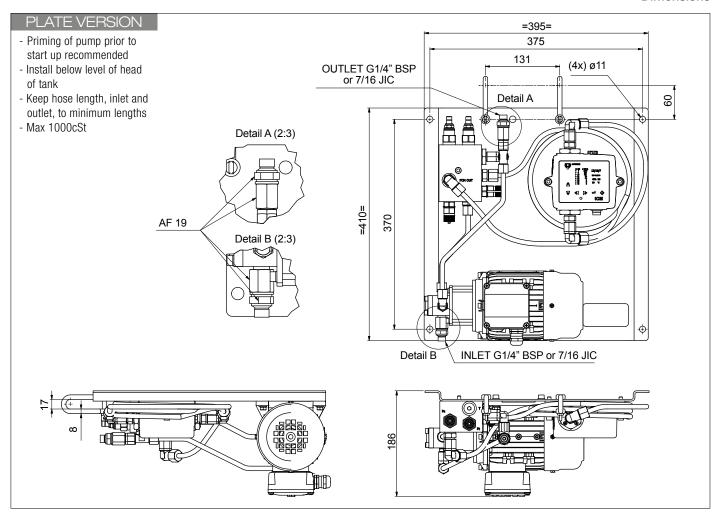
ACMU GENERAL INFORMATION

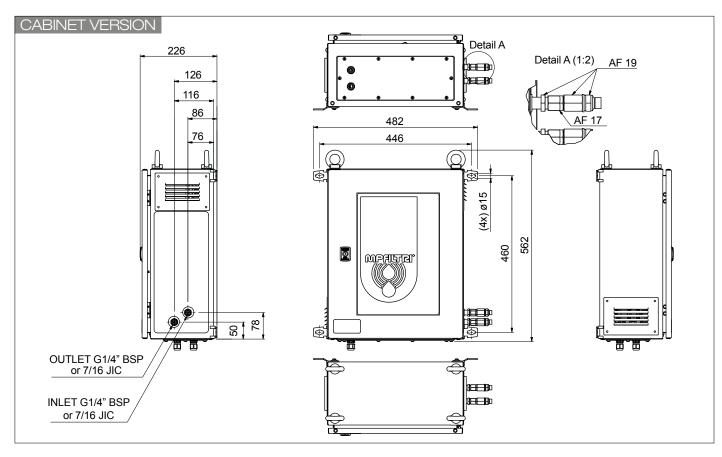

LPA View Software

The LPA View software is used with the LPA3, LPA2, CML2, CML4 and ICM particle counters. When connected to LPA View, MP Filtri CMPs can transfer results in realtime, or alternatively, historical results can be downloaded from the CMP's inbuilt memory.

- Runs on Windows XP, 7, and Windows 10
- Full adjustment & control of product settings, test times and alarms
- Easy test report generation
- Trend analysis
- Graphical display options
- Universal format across our contamination monitoring product range




Type of applications



(*) Gauge pressure

Designation & Ordering code

BS110 & BS500

Bottle Samplers - For use with MP Filtri's portable APC

Bottle Samplers

The 110 ml bottle samplers are suitable for off-line and laboratory applications where fluid sampling at point of use is inaccessible or impractical.

A fluid de-aeration facility comes as standard.

> Features & Benefits

- Vacuum feature for de-aeration of fluids
- Compatible with all portable MP Filtri Contamination Monitoring Products
- Strong Laboratory aesthetic
- Transparent outer for visual indication
- Full accessories kit included
- Includes carry case (BS110)
- Contact MP Filtri for use with fluids other than those stated

Scope of Supply

- 1 x 110 ml Bottle Sampling unit
- 1 x Pressure cap
- 1 x Vacuum cap
- 1 x M16x2 microbore pressure hose, 600 mm long
- 1 x 1L waste receptacle
- 1 x 12V, 2A power adapter c/w UK/EU/US/AUS/CN heads
- 1 x pack of disposable dip tubes
- 1 x hand pump
- 1 x length of hose for hand pump
- 3 x 100 ml clear plastic bottles
- 1 x Hard copy of product user guide
- 1 x Digital copy of user guides/software/drivers
- 2 x Thermal printer paper
- 1 x Carry case

See Accessories at page 93

Left facing view

Front facing view

Open case Front facing view

Technical data

Max. Chamber Pressure

2.5 bar / 36.3 psi only

Min. Chamber Pressure

0.61 bar / 8.85 psi to 0.81 bar / 11.75 psi

For use with....

MP Filtri Portable Contamination Monitoring Products

Supply Voltage

12V, 2 amp

Wetted Parts (Internal)

Aluminium HE30, 303 Stainless Steel, Polyurethane,

FPM, Acrylic

On/Off & Stop/Start signals

Switch (Manual Operation)

Hydraulic Hoses (External)

600 mm x 2 mm ID M16x2 microbore pressure hose

Max Flow Rate (ml/min)

Viscosity dependant

Min Flow Rate (ml/min)

Viscosity dependant

Visual Pressure Indicator

No

Weight / Dimensions

7 kg, Height 212 mm, Depth 163 mm, Width 130 mm

Pressure Gauge

No

Pressure Ranges

2.0 bar / 29 psi options

IP Rating

IP50

Fluid Compatibility / Corrosion Resistance

Industrial Hydrocarbon based fluids (typical)

Min Outlet Pressure

1013 bar / 14.7 psi

Max. Fluid Temperature (Continuous)

80 °C / 176 °F

Min Fluid Temperature

Viscosity dependant

Max. Viscosity

400 cSt

Min. Viscosity

1 cSt

Max outlet pressure

2.0 bar / 29 psi options

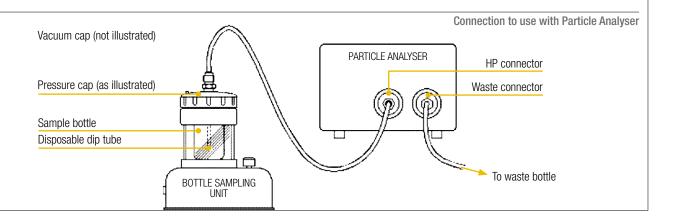
Min. Continuous Ambient Temperature

10 °C / 50 °F

Max. Continuous Ambient Temperature

 $55~^{\circ}\text{C}\,/\,131~^{\circ}\text{F}$

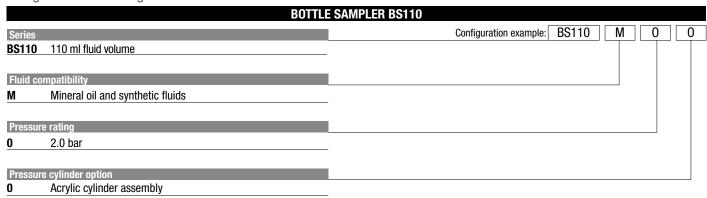
Power Consumption


24W

Warranty

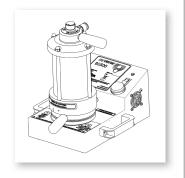

12 months

Installation


Indoor Use / Laboratory Use

Dimensions

Designation & Ordering code



Contamination Monitoring Products

Bottle Samplers

The 500 ml bottle samplers are suitable for off-line and laboratory applications where fluid sampling at point of use is inaccessible or impractical.

A fluid de-aeration facility comes as standard.

> Features & Benefits

- Vacuum feature for de-aeration of fluids
- Compatible with all portable MP Filtri Contamination Monitoring Products
- Strong Laboratory aesthetic
- Transparent outer for visual indication
- Full accessories kit included
- Contact MP Filtri for use with fluids other than those stated

Scope of Supply

- 1 x 500 ml Bottle Sampling base unit (*)
- 1 x Top cap, pressure/vacuum chamber (*)
- 1 x M16x2 microbore pressure hose, 600 mm long
- 1 x Power adapter
- 1 x UK/EU/US/AUS/CN power lead*
- 3 x 210 ml clear glass bottles
- 2 x 500 ml clear glass bottles
- 1 x Digital copy of user guides/software/drivers

(*) Specific model will be as per ordered item

See Accessories at page 93

Front / Left facing view

Front / Right facing view

Back / Right facing view

Back / Left facing view

Technical data

Max. Chamber Pressure

2.5 bar / 36.3 psi (standard), 4.5 bar / 65.3 psi (high pressure)

Min. Chamber Pressure

0.61 bar / 8.85 psi to 0.81 bar / 11.75 psi

For use with....

MP Filtri Portable Contamination Monitoring Products

Supply Voltage

12V, 5 amp

Wetted Parts (Internal)

Aluminium 6082 T6, 303 Stainless Steel, 316 Stainless Steel. Seal & Cylinder material optional

On/Off & Stop/Start signals

Switch (Manual Operation)

Hydraulic Hoses (External)

600 mm x 2 mm ID M16x2 microbore pressure hose

Max Flow Rate (ml/min)

Viscosity dependant

Min Flow Rate (ml/min)

Viscosity dependant

Visual Pressure Indicator

Yes

Weight / Dimensions

9 kg, Height 333 mm, Depth 341 mm, Width 264 mm

Pressure Gauge

Yes (only on 4.5 bar / 65.3 psi version)

Pressure Ranges

4.5 bar / 65.3 psi or 2.5 bar / 36.3 psi options

IP Rating

IP50

Fluid Compatibility / Corrosion Resistance

Industrial, aerospace & off-shore control fluids (typical)

Min Outlet Pressure

1013 bar / 14.7 psi

Max. Fluid Temperature (Continuous)

80 °C / 176 °F

Min Fluid Temperature

Viscosity dependant

Max. Viscosity

Not greater than 400cSt (on 2.5 bar version)

Min. Viscosity

1 cSt

Max outlet pressure

Version dependant: 2.5 bar / 36.3 psi for 0 version 4.5 bar / 65.3 psi for H version

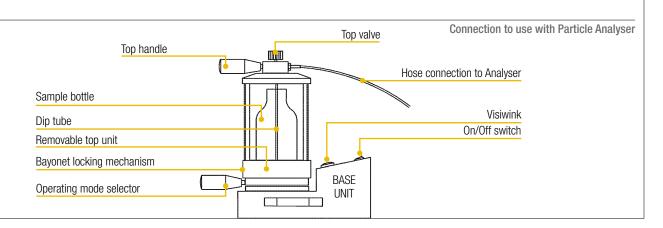
Min. Continuous Ambient Temperature

10 °C / 50 °F

Max. Continuous Ambient Temperature

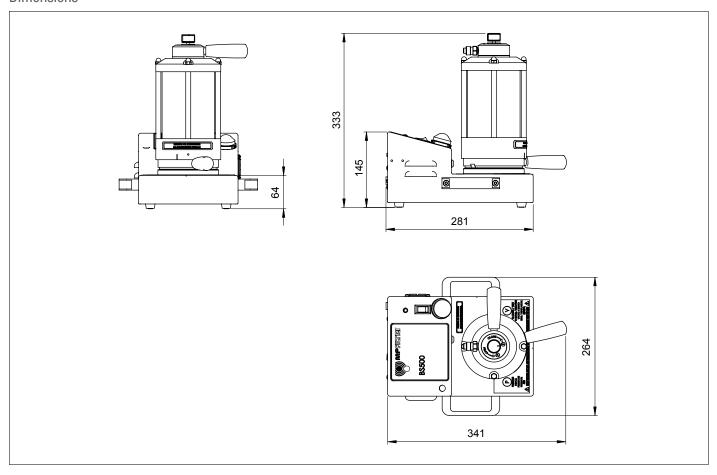
55 °C / 131 °F

Power Consumption

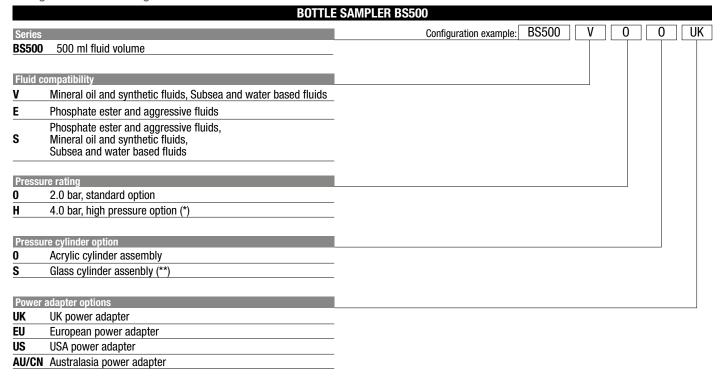

60W

Warranty

12 months


Installation

Indoor Use / Laboratory Use



BS500 Bottle Samplers

Dimensions

Designation & Ordering code

- (*) = H version only available in BS500 V version
- (**) = Glass version only available in BS500 E & S version

Bottles

At MP Filtri we offer a range of standard & ultra-clean glass bottles for your sampling needs:

100 ml, 210 ml & 500 ml Standard Bottles (not certified clean)

- 100 ml, available in amber glass or clear plastic varieties
- 210 ml, available in clear glass
- 500 ml, available in clear glass

100 ml & 210 ml Ultra Clean Glass Bottles

- Certified to ISO 3722 Hydraulic fluid power
- Fluid sample containers
- Qualifying and controlling cleaning methods NAS 0 to NAS 00/ AS4059E Table 1 Class 0

Glass Colour

Clear glass provides better visibility of the sample, making de-aeration easier to monitor. Amber glass may reduce the effect of UV light on the sample, reducing the risk of microbial growth and FAME (fatty acid methyl esters) which can be significant in fuel analysis.

DE-AERATION & CLEANLINESS

Samples should be shaken vigorously before use however this causes the sample to become aerated which means leaving it to settle.

The BS500 & BS110 de-aeration facility reduces this settling time, allowing more samples to be analysed thereby increasing productivity.

SAMPLING FACTORS

Below are some of the factors which should be considered when taking a sample. For guidance on sampling procedures refer to ISO 4021 & the product user guide.

- Location of the take-off point
- Homogeneity of the sample
- Local area cleanliness
- Bottle cleanliness
- Equipment cleanliness
- Flushing / Cleaning fluid cleanliness
- Operator clothing & cleanliness
- Air cleanliness

100 µm Dust particle (dead skin)

40 µm Pollen

White blood cell

Dust mite faeces

8 µm Red blood cell

E-coli bacteria

HOW SAMPLING

Sample pumps

Hand pump

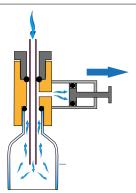
The pump and its associated parts are also available as a spares. See spares list page 88-89

For systems where there is no practical access to a test point, a sample may need to be taken from an un-pressurized reservoir.

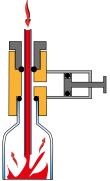
For this occurrence we offer a simple **hand pump device** with both off-line sampling products which provides for clean and efficient sampling.

The design ensures that only the hose is in contact with the sample fluid, providing greater confidence in analysis, and we provide a range of adapters to suit our various bottle sizes.

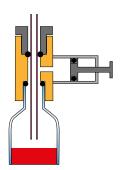
The pump can be fully dismantled for cleaning and the sample hose plus main seal can be replaced to further improve clean practise.


Ultra clean bottles cleaned to and in accordance with DIN/ISO 5884.

Ultra clean bottles cleanliness verified to ISO 3722.


NAS 1638 cleanliness certification of between Class 00 and Class 0.

Descriptions	Part Code	Dimensions (mm)
100 ml - Ultra Clean Bottle (Certified)	P.02	Ø 50x92
100 ml - Standard Bottle Brown Glass	BS0016	Ø 50x91
100 ml - Clear Plastic Bottle	7.111	Ø 51x92
100 ml - Standard Bottle Tray (72 bottles)	BS0072	N/A
210 ml - Ultra Clean Bottle (Certified)	P.03	Ø 65x130
210 ml - Standard Bottle	8.054	Ø 65x122
500 ml - Standard Bottle	8.328	Ø 82x152


How it works

Priming the pump causes a vacuum inside the bottle, syphoning fluid from the reservoir.

The design of the pump means that only the hose is in contact with the fluid protecting the quality of the sample.

The sample level should always finish below the level of the hose.

The bottle can now be removed and capped.

Electric vacuum pump

MP Filtri's Patch Imaging Kit is available with an optional electric pump (spares number: 444.009000). The pump is available with power options for the UK, EU, US, AUS/CN.

See page 93

PIK - Patch Imaging Kit

Patch Sampling and Digital Imaging Kit

PIK GENERAL INFORMATION

Description

Contamination Monitoring Products

High-resolution microscopic visual analysis of contamination in fluids

> Features & Benefits

MP Filtri's new Patch Imaging Kit enables sample-testing of fluids, followed by a full analysis of the contaminants - not only recording and measuring the size and shape of particles under magnification (up to 400x) - but also delivers recording and storage of data and results to your laptop or PC.

Rugged and robust yet perfectly portable, the new Patch Imaging Kit enables fast and accurate testing outside the laboratory.

KEY FEATURES

- High-performance digital microscope, enabling magnification up to 400x
- Sophisticated software enables the measurement and analysis of individual particles
- Full patch testing kit apparatus making it easy to take samples quickly and accurately
- Windows-based software for problem-free installation onto PCs and laptops
- Easy to use without the need for formal training
- Heavy-duty peli-case and laser-cut foam surround for maximum protection and portability
- Simple, step-by-step instructional videos
- Perfectly complements MP Filtri's acclaimed range of portable particle counter products

KIT COMPOSITION

- Heavy-duty orange pelicase
- Pelicase foam insert
- Self-adhesive patch test covers
- Patch test membranes -1.2 μm
- Spray bottle
- 2 x Stainless steel tweezers
- Hand-pump
- Waste bottle
- 3 x Clean bottles
- Reusable Nalgene filter assembly
- 0.01mm Calibration slides
- Microscope power adaptor
- USB Data stick (includes microscope software and PDF manual)
- Hose pouch
- 1 x Hose 8 x 6 mm Nalgene vacuum cable
- 1 x Hose 6 x 4 mm Hand pump sampling cable
- Swift Microscope SW150 and accessories including cable and viewer
- Microscope camera 1.3MP
- Serial plate for patch imaging kit
- A5 document wallet
- Patch test report cards
- Optional Electric Vacuum Pump (see page 90)

See Accessories at page 93

(*) pour plus de renseignements, veuillez contacter votre équipe de ventes MP Filtri locale

PRINCIPAL COMPONENTS TECHNICAL DATA

Microscope:

- Digital microscope that connects direct to PC/laptop
- Fully rotatable monocular head for easy shared use, perfect for laboratories and one-on-one instruction
- Available magnification settings of 40X, 100X and 400X
- A dual-illumination system allows examination of both transparent and solid specimens while cool LED lights protect eyesight
- Sleek design with metal carrying handle and base combine with cordless capability to make this microscope practical for field experiments
- The digital microscope allows operators to examine and easily determine the nature and sizes of solid particles inside the fluid.

PARTICLES OUANTITATIVE ANALYSIS

After determination of the nature (and sizes) of particles inside the fluid, it is useful to quantify the contamination inside system.

Determination of quantitative contamination is done by taking fluid sample from the system (preferably in working conditions) and following the sample fluid analysis with an automated particle counter or with a portable particle counter that is linked directly to the system.

They give immediate results according to standard ISO 4406 or NAS 1638. Both particle counters, portable or not, have values and counter indications. Please note the portable particle counters need a minimum pressure to work correctly. They produce immediate results.

Technical data

Sampling

Hand pump

Optional Electric Vacuum Pump

Patch test

Patch test membranes -1.2 µm

Digital analysis

Swift Microscope SW150 and accessories including cable and viewer.

Microscope camera - 1.3MP

Easy-View software for digital analysis

Samples Filtration System

Reusable Nalgene filter assembly

Waste bottle

3 x Clean bottles

Spray bottle

Accessories for identification and test report

Patch test report cards

0.01 mm Calibration slides

Self-adhesive patch test covers

Rigid carrying case

Heavy-duty orange Pelicase

Weight and dimensions

12.5 kg, Height 265 mm, Depth 390 mm, Width 519 mm

Designation & Ordering code

DUSI	griduori & ordering code											
	PIK - PATCH IMAGING KIT											
Produ	ict	Configuration example: PIK P01										
PIK	Patch Imaging Kit											
Pump	and Electric supply options											
P01	Hand pump only											
P02	Electric Vacuum Pump - UK supply											
P03	Electric Vacuum Pump - EU supply											
P04	Electric Vacuum Pump - US supply											
P05	Electric Vacuum Pump - AUS/CN supply											

FLUID COMPATIBILITY CHARTS

HYDROCARBON AND SYNTHETIC

Fluid type	Fluid spec.		IC				L	PA				ИL		BS110		BS500	
		M	(W)	N	S	M	(W)	N	S	M	(W)	N	S	M	V	E	S
	AEROSHELL FLUID 31 (0X-19)																
	AEROSHELL FLUID 51																
	AEROSHELL FLUID 602																
	CASTROL CONSTAB PS 10W-40																
	DIESEL CALIBRATION OIL 4113																
	FINA POLYGLYCOL FLUID																
	GEAROIL ISO VG 320																
	ISO 32																
	ISO 46																
	ISO 68																
	MIL-H-5606																
	MIL-H-83282																
	MIL-H-87257																
	MOBILGEAR SHC XMP 320																
	NATO H-515 (OM-15)																
SYNTHETIC OR MINERAL	NATO H-520 (OM-18)																
BASED LIQUIDS	NATO H-537																
	RENOLIN PG 68																
	RENOLIN PG 100																
	RENOLIN PG 150																
	RENOLIN PG 220																
	RENOLIN PG 320																
	RENOLIN PG 460																
	RENOLIN PG 680																
	RENOLIN PG 1000																
	RENOLIN UNISYN OL 32																
	RENOLIN UNISYN OL 46																
	RENOLIN UNISYN OL 68																
	RENOLIN UNISYN OL 100																
	RENOLIN UNISYN OL 150																
	STATOIL HYDRAULIC 131																
	AERO HF585B																
	MOBIL DTE 25																

For special applications or for fluids not mentioned in this table, please contact MP Filtri Technical and Sales Department. Alternatively, visit the services section of our website where we have details on fluid testing and analysis. For guidance on moisture sensing compatibility, contact MP Filtri Technical and Sales Department. Typically conductive fluids are not compatible with the moisture sensor.

Compatible
Not compatible
Contact MP Filtri

Please note that compatibility is based product performance with fluid viscosity at 20 °C in standard dye colourant or natural state. Tests are conducted with the suitable fluid in its pure state. Performance of solutions or mixed emulsions cannot be guaranteed. "Compatibility" is defined as a liquid which does not suffer short or long term degradation as a result of coming into contact with the wetted materials contained within the product. It is also a confirmation that the transparency of the liquid is suitable for the sensitivity of the product range.

For details on the specific product code required for your fluid, contact contact MP Filtri Technical and Sales Department.

FLUID COMPATIBILITY CHARTS

OFFSHORE

Fluid type	Fluid spec.		IC	M			LF	PA			CI	ЛL		BS110	BS110 BS		S500	
		М	(W)	N	S	M	(W)	N	S	M	(W)	N	S	M	V	E	S	
	HW443																	
	HW443R																	
	HW453																	
	HW540																	
	HW540																	
	PELAGIC 50																	
	PELAGIC 100																	
OFFSHORE	TRANSAQUA HT																	
& SELECTED WATER BASED	TRANSAQUA HT2																	
FLUIDS	FRESH WATER																	
	DE-IONISED WATER																	
	SEAWATER																	
	HOUGHTO-SAFE 273 CTF																	
	HOUGHTO-SAFE BC24046																	
	WATER GLYCOL HFC 46																	
	LF2100 (99%WATER, 1% MIX)																	
	SV3																	

AGGRESSIVE FLUIDS

Fluid type	Fluid spec.		IC	М			LF	PA			CI	ИL		BS110		3S500)
		M	(W)	N	S	M	(W)	N	S	М	(W)	N	S	M	V	E	S
	HYJET IV																
PHOSPHATE ESTHER	HYJET V																
& AGGRESSIVE LIQUID	SKYDROL 500B																
APPLICATIONS	SKYDROL 500B4																
	SKYDROL LD4																

Compatible
Not compatible
Contact MP Filtri

For special applications or for fluids not mentioned in this table, please contact MP Filtri Technical and Sales Department. Alternatively, visit the services section of our website where we have details on fluid testing and analysis. For guidance on moisture sensing compatibility, contact MP Filtri Technical and Sales Department. Typically conductive fluids are not compatible with the moisture sensor.

Please note that compatibility is based product performance with fluid viscosity at 20 °C in standard dye colourant or natural state. Tests are conducted with the suitable fluid in its pure state. Performance of solutions or mixed emulsions cannot be guaranteed. "Compatibility" is defined as a liquid which does not suffer short or long term degradation as a result of coming into contact with the wetted materials contained within the product. It is also a confirmation that the transparency of the liquid is suitable for the sensitivity of the product range.

For details on the specific product code required for your fluid, contact contact MP Filtri Technical and Sales Department.

FLUID COMPATIBILITY CHARTS

FUELS

Fluid type	Fluid spec.		IC	M			L	PA			CI			BS110		BS500	b
		M	(W)	N	S	M	(W)	N	S	M	(W)	N	S	M	V	Е	S
	JET A-1																
	JET A																
	JET B																
	JP1																
	JP5																
FUELS	JP6																
	JP7																
	JP8																
	JPTS																
	FT JET FUEL																
	GTL JET FUEL BLEND																
	DIESELS																

BIO FLUIDS

Fluid type	Fluid spec.		IC	М			LF	PA			CI	ЛL		BS110		BS500	b
		M	(W)	N	S	M	(W)	N	S	M	(W)	N	S	M	V	E	S
	BIO-ETHANOL																
	BIO-DIESEL																
	PLANTOHYD N SERIES																
BIODEGRADEABLE FLUIDS	PANOLIN HLP SYNTH 22																
& VEGETABLE OILS	SUNFLOWER OIL																
	RAPESEED OIL																
	CORN OIL																
	GROUND NUT OIL																
	CAT BIO HYDO HEES																

Compatible
Not compatible
Contact MP Filtri

For special applications or for fluids not mentioned in this table, please contact MP Filtri Technical and Sales Department. Alternatively, visit the services section of our website where we have details on fluid testing and analysis.

For guidance on moisture sensing compatibility, contact MP Filtri Technical and Sales Department.

Typically conductive fluids are not compatible with the moisture sensor.

Please note that compatibility is based product performance with fluid viscosity at 20 °C in standard dye colourant or natural state. Tests are conducted with the suitable fluid in its pure state. Performance of solutions or mixed emulsions cannot be guaranteed. "Compatibility" is defined as a liquid which does not suffer short or long term degradation as a result of coming into contact with the wetted materials contained within the product. It is also a confirmation that the transparency of the liquid is suitable for the sensitivity of the product range.

For details on the specific product code required for your fluid, contact contact MP Filtri Technical and Sales Department.

Description (product types)	Ordering Code
Calibration Verification Fluid (requires use of Bottle Sampling device)	PCCF
CMP Hydraulic connections / options:	
M16x2 microbore pressure hose. plated steel. 600 mm (M versions)	95.Y30Y30X261060
M16x2 microbore pressure hose, plated steel, 1500 mm (M versions)	95.Y30Y30X261150
M16x2 microbore pressure hose, stainless steel, 600 mm (N versions)	95.Y30Y30X161060
M16x2 microbore pressure hose. stainless steel. 1500 mm (N versions)	95.Y30Y30X161150
Waste Hose (M versions). 2000 mm - Brass / FKM	SK0014S30
Waste Hose (N versions). 2000 mm - Stainless Steel / FKM	SK0014S30N
Waste Hose (S versions). 2000 mm - Stainless Steel / FFKM	SK0014S30S
Offline Hose Assembly	481.027000
Pouch for pressure hose/waste hose	7.106
M16x2 M to F Coarse Screen Filter (M and N versions)	SK0040
G1/4 F to F coarse screen filter (M/N/S versions)	11.615
M16x2 F to F Coarse Screen Filter (S versions)	SK0041
Airbus adaptor with test point	SKAA02
Waste Bottle:	
1 Litre - Round	SK0012
1 Litre - Square (for use with CB0001)	SK0013
Communications:	
Serial cable to USB converter	SK0026
PC Download cable	6.123
USB A-B cable	11.081
Bluetooth Portable Printer	482.016000
1m USB A to C Cable	443.074000
ICMKAZ2 to USBi conversion kit - not to be used in zoned areas	11.645
USB stick with all user guides and LPA-View Software	13.055001
Offline sampling equipment:	
Disposable Dip tubes - pack of 50	BS0018
Hand Pump	BS0020
Hand Pump Hose - 1000 mm	BS0022
Bottle Sampler hand pump and hose kit	BS0024
100 ml Standard Brown Glass Bottle	BS0016
Tray of 72 x 100 ml Standard Brown Glass Bottles	BS0072
100 ml Clear Plastic Bottle	7.111
Box of 20 x 100 ml Clear Plastic Bottles	7.112
250 ml Standard Clear Glass Bottle	8.054
Box of 20 x 250 ml Standard Clear Glass Bottles	8.054-20
500 ml Standard Clear Glass Bottle	8.328
DIN/ISO5584/ISO3722 certiified clean. 100 ml clear glass bottle	P.02
DIN/ISO5584/ISO3722 certiified clean. 100 ml clear glass bottle - Box of 25	P.0225
DIN/ISO5584/ISO3722 certiified clean. 250 ml clear glass bottle	P.03
DIN/ISO5584/ISO3722 certiified clean. 250 ml clear glass bottle - Box of 25	P.0320

LPA2	LPA3	CML2	CML4	ICM 4.0	ICM 2.0	ICMKAZ2	ACMU	PIK	BS110	BS500	ICMUSBi
•	•	•	•						•	•	
•	•	•	•	•	•	•			•	•	
•	•	•	•	•	•	•			-		
•	•	•	•	•	•	•			•	•	
•	•	•	•	•	•	•					
•	•	•	•								
•	•	•									
•	•	•									
			•								
•	•		•					•			
•	•	•	•			•					
				•	•						
•	•	•	•			•					
•											
	•	•							•		
•	•		•								
•		•									
•		•									
	•										•
			•								
			•								
						•					•
•	•	•	•	•	•	•	•	•	•	•	•
•											
•	•										
•	•										
•	•										
•	•										
•	•										
•	•										
•	•										
	•										
	•										
	•										
•	•										
•	•										
	•										
	•										

Description (product types)	Ordering Code
Power Options:	
12V. 2A Power Adapter - UK/EU/US/CN/AUS	6.209
19V. 3A Power Adapter	61.034000
12V. 5A Power Adapter for 500 ml Bottle Sampler	8.029
UK Lead for 8.029	8.031
EU Lead for 8.029	8.032
US Lead for 8.029	8.030
CN/AUS Lead for 8.029	8.072
Other:	
Thermal printer paper 57x33 mm	63.083000
Thermal paper roll 57x51 mm	6.160
LPA2 Aviation Edition travel case without foam	TC0005
Replacement foam insert for TC0005	6.300
Heavy-duty orange pelicase	443.061E20
Pelicase foam insert	443.062020
Self-adhesive patch test covers	444.029001
Patch test membranes - 1.2 micron filter	444.010000
Spray bottle	444.018J10
Stainless steel tweezers	444.011120
Waste bottle	444.032J00
Reuseable Nalgene filter assembly	444.024000
0.01 mm Calibration slides	444.025000
Microscope power adaptor	444.033000
Hose - 8 x 6 mm Nalgene vacuum cable	444.026000
Hose - 6 x 4 mm Hand pump sampling cable	7.107
Microscope camera - 1.3 MP	444.016010
Serial plate for patch imaging kit	484.314000
A5 document wallet	444.027001
Patch test report card	444.028001
Electric vacuum pump	444.009000
CML Carry Bag	10.011
LPA3 Carry Bag	63.088000
LPA2 Carry Bag	CB0001
Black support case (without contents)	BS0040
Heavy Duty Travel Case for Bottle Sampler	TC00055B

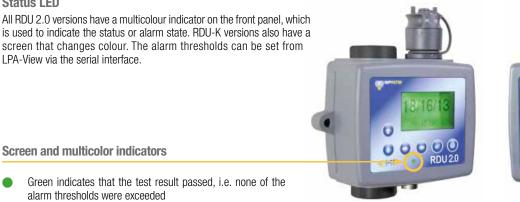
LPA2 LPA3 CML2 CML4 ICM 4.0 ICM 2.0 ICMKAZ2 Image: Company of the comp	ACMU	PIK	BS110	BS500	ICMUSBi
			_		I
•			•		•
				•	
• • •				•	
• • •				•	
• • •				•	
• • •				•	
•					
•					
		•			
		•			
		•			
		•			
		•			
		•			
		•			
		•			
		•			
		•			
		•			
		•			
		•			
		•			
		•			
		•			
		•			
• •					
•					
•					
				•	
					•

Accessories

Remote Display Unit

Depending on your application, access and visibility of particle counting equipment can sometimes be an issue. The ICM-RDU has specially been developed to dovetail with its parent ICM 2.0. So you have the option to control and monitor the ICM 2.0 remotely. Supplied with a 10m cable as standard.

> Features & Benefits


- Large backlit display
- Keypad interface

Status LED

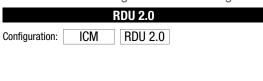
- Robust die-cast aluminium construction

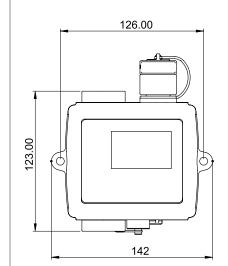
Scope of Supply

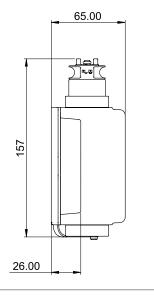
- 1 x ICMRDU2.0
- 1 x 10m Twisted Pair Cable Assembly
- 1 x Digital copy of user guides/software/drivers

Right facing view

Bottom view


LPA-View via the serial interface.


Screen and multicolor indicators


- Green indicates that the test result passed, i.e. none of the alarm thresholds were exceeded
- Yellow indicates that the lower cleanliness limit was exceeded, but not the upper one
- Red indicates that the upper clean liness limit was exceeded
- Blue indicates that the upper water content limit was exceeded
- Red/Blue Alternating indicates both cleanliness and water content upper limits exceeded
- Violet indicates that the upper temperature limit was exceeded

Designation & Ordering code

Electric Vacuum Pump

MP Filtri's Patch Imaging Kit is available with an optional electric pump (spares number: 444.009000).

The pump is available with power options for the UK, EU, US, AUS/CN.

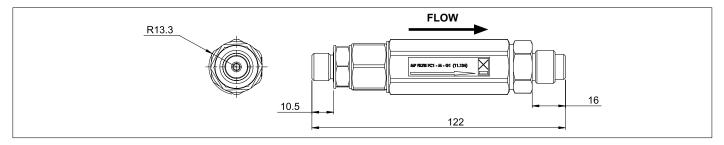
Used with PIK

Designation & Ordering code

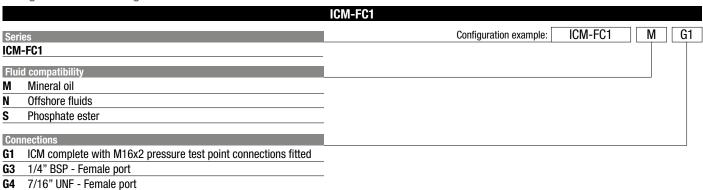
444.009000

Configuration: 444.009000

Description


Flow Control Valve

The FC1 is a pressure compensated flow control valve which can operate across a range of fluid types and is compatible with the ICM where flow rate exceeds operating parameters. Max pressure rating 400 bar at normal hydraulic system temperatures.


> Features & Benefits

- Pressure compensated
- Regulates flow to within ICM specification
- Various connection options
- Viscosity independent
- Hexagonal form for ease of installation

Dimensions

Designation & Ordering code

Auxiliary Communication Options

We offer four auxiliary communication devices to operate with the ICM 2.0:

ICM-USBi:

Two auxiliary communication devices are available to order with the ICM. A USB interface which allows for communication via a laptop (RS485 to RS232 converter) & an ethernet device for remote access via a network hub.

ICM-ETHi:

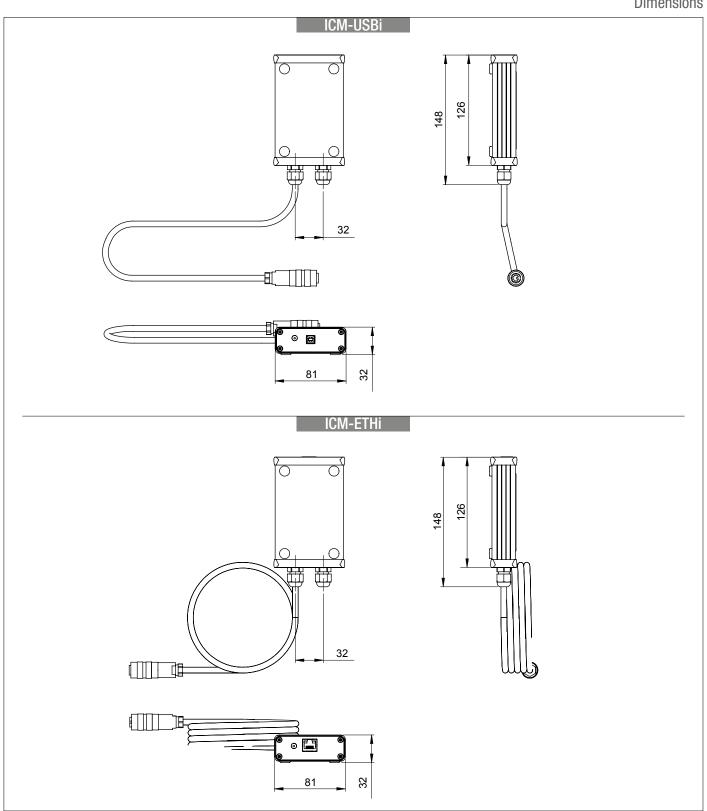
An ethernet device enables remote access via a network hub via Com Port redirection software.

Both devices can transmit power to the ICM/RDU electrical circuit using a DC power adapter.

The USBi has the additional benefit of supplying power via the USB cable directly. Both devices come with a DC Power adapter and 3m twisted pair cable as standard.

> Features & Benefits

- Compact
- Off the shelf solution
- Robust aluminium construction



Plug and play technology

- Robust aluminium construction
- Compact
- Provided with a twisted cable conductors 8, length 3m.
- All devices can transmit power to the ICM/RDU electrical circuit using the supplied DC power adapter.

Dimensions

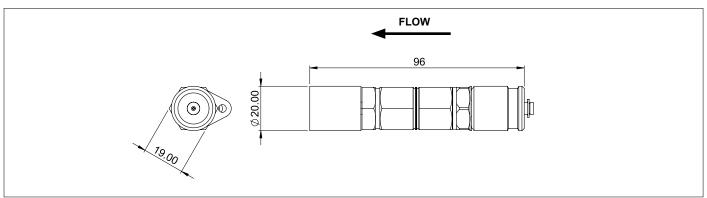
Designation & Ordering code

Configuration:	ICM	USBi
	ICM	ETHi

ICM-USBi & ICM-ETHi

Screen Filter

The SK0040 coarse screen filter adapter is designed to limit the ingress of large particles into MP Filtri's range of Contamination Monitoring Products (CMP).


> Features & Benefits

- Part number: SK0040
- Inlet connection: M16x2 male test point
- Outlet connection: M16x2 female thread form
- Pressure rating: 400 bar
- Mesh rating: 600 µm

Used with LPA3, LPA2, CML2, CML4 and ICM2.0

Dimensions

Designation & Ordering code

SK0040

Configuration: SK0040

FLUID SAMPLING BOTTLES

Description

> Features & Benefits

We supply laboratory standard and certified clean sampling bottles. 100 ml, 210 ml and 500 ml bottle sizes are available and are easily incorporated into our range of bottle samplers.

Designation & Ordering code

BS110 - BS500

For Ordering Codes see page 88-91

PRESSURE & WASTE HOSES

Description

> Features & Benefits

Replacement hoses.

Pressure Hose

M16x2 Micro bore pressure hose by length (various available) long Plated steel (alternative material options available)

Pressure hoses are able to connect MP Filtri products directly to your hydraulic systems.

- LPA3
- LPA2
- CML2
- CML4
- BS110 BS500
- ICM 2.0

Waste Hose

Length: 2000 mm

OD: 8 mm

ID: 5 mm

Standard material: Polyurethane*

Fitting type: Quick release coupling (brass as standard)

*Other versions available to suit the M, N and S versions of CMP

- LPA3
- LPA2
- CML2
- CML4

Designation & Ordering code

HOSES

For Ordering Codes see page 88-91

Filtered to perfection

Our mobile filtration units provide the perfect solution for the oil maintenance of your lubrication and hydraulic fluids in off-line filtration applications.

Benefits:

- Versatile and compact design
- Filtering and continuous cleaning of systems
- Removal of water from hydraulic systems (when fitted with a spin on filter)
- Particle counting to determine the Contamination Class according to ISO 4406, NAS 1638, AS4059

Applications:

- For oil changes, initial filling and flushing cycles in hydraulic and lubrication systems
- Pulp and paper mill equipment
- Construction machinery
- Large central hydraulic power units
- Injection moulding equipment
- Stamping presses

Mobile filtration units

UFM 015	page 103
UFM 041	113
UFM 051	119
UFM 091	125
UFM 181	131
UFM 919	137
FTU 080	143

UFM 015

Mobile filtration unit 15 l/min flow rate

UFM 015 GENERAL INFORMATION

Description

Mobile filtration units

The UFM 015 is a portable oil transfer/filtration unit, specifically designed for both filling/transferring hydraulic oils from containers to the hydraulic tank as well as filtering and cleaning hydraulic systems.

The unit utilises Spin-On standard cartridge (supplied as option), available in two lengths, thus increasing the dirt holding capacity and lowering pressure drop of the unit.

The unit has the flexibility in being able to offer a wide range of medias and micro ratings to suit any application. The unit is very compact and lightweight.

> Features & Benefits

- Handle size
- Light
- Easy to use
- Easy maintenance
- Reliable
- Absolute filtration

Technical data

Pump

Gear pump

Electric Motor

0.18 kW 230 V single phase electric motor

Flow (I/min)

15 l/min - 1450 r.p.m.

Max. Operation Pressure

4.0 bar

Viscosity range

Min. operation 10 cSt Max. operation 200 cSt

Max. only for cold start 400 cSt

Suction Filter

Type Y filtration 500 µm

Filtration Rating

3, 6, 10, 16, 25 μ m β >1000 flow through the element Out/In

Bypass valve Δp set

Rating 3.5 bar

Fluid Temperature

From +5 °C to 60 °C

Ambient Temperature

From +5 °C to 40 °C

Protection Class

IP55

Seal

NBR

Fluid Compatibility

Mineral Oil - Other on request

Suction hose lance

DN18 length 2500 mm DN/OD20 length 400 mm

Pressure hose lance

DN18 length 2500 mm DN/OD18 length 400 mm

Weight

14.8 kg

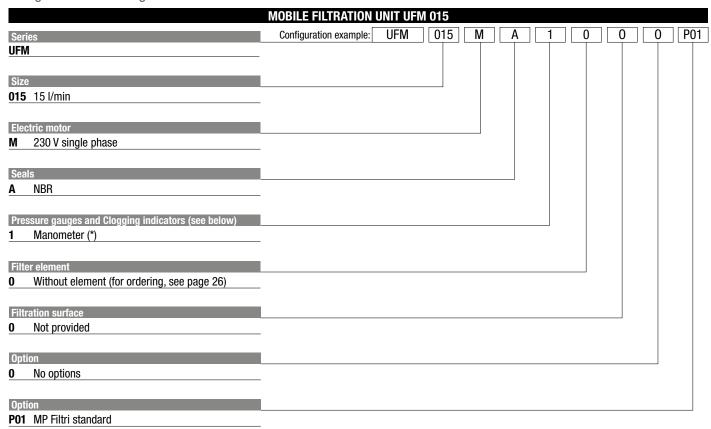
Equipment

Visual clogging indicator (gauge)

C € Standard

The new concept of filtration

ELIXIR®


RFEX 160 - RETURN FILTER

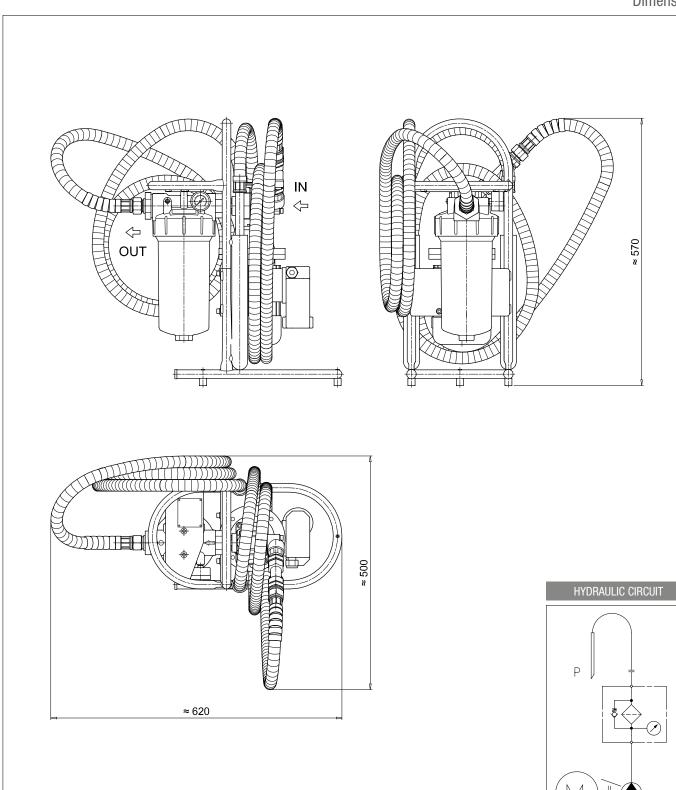
Lighter, easier to use, and kinder to the environment - MP Filtri's new ELIXIR low pressure concept filters have been specially designed for in-line connections and to handle working pressures up to 1.6 MPa (16 bar).

The cast aluminium head and polyamide design reduces weight by 10% compared to the Spin-on range.

Less waste reduces both your carbon footprint and protects the environment. Replacement is fast and easy, just disassemble the bowl with a 32 mm fixed wrench , take out the FEX filter element and replace.

Designation & Ordering code

Filtration element should be ordered separately


FILTRATION SURFACE - STANDARD		
Inorganic microfibre	Wire mesh element	
FEX 160 A03 A N P01	FEX 160 M25 A N P01	
FEX 160 A06 A N P01	FEX 160 M60 A N P01	
FEX 160 A10 A N P01		
FEX 160 A16 A N P01		
FEX 160 A25 A N P01		

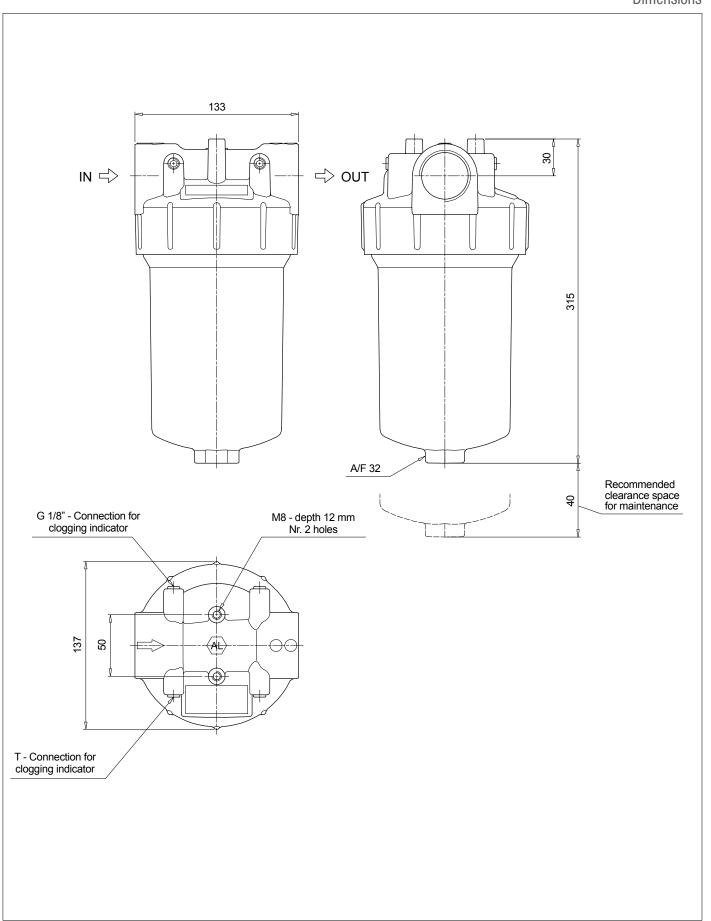
WATER REMOVAL - FILTRATION SURFACE - STANDARD		
Multi-Layer water absorber		
FEX 160 WA025 A N P01		

CLOGGING INDICATORS (*)

BVA Axial pressure gauge

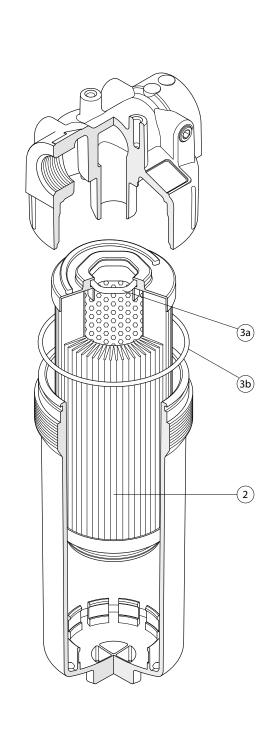
Settings	Ordering code
$2.5 \text{ bar } \pm 10\%$	BV A 25 P01

RFFX160



Designation & Ordering code

COM	PLETE BODY	
Series and size	Configuration example : RFEX160 E A B 6 P01	П
RFEX160		
Bypass valve	_	
S Without bypass		
E 3 bar		
Seals and treatments		
A NBR	_	
Ocupations	_	
Connections B G 1 1/4"		
Connection for clogging indicator		
6 With plugged connections		
	Execution	
	PO1 MP Filtri standard	


		FILTER	ELEMENT
Element series and size			Configuration example: FEX160 A10 A PO
FEX160			
Filtration rating			
A03 Inorganic microfiber	3 µm	M25 Wire mesh 25 μm	
A06 Inorganic microfiber	6 μm	M60 Wire mesh 60 μm	
A10 Inorganic microfiber	10 μm	M90 Wire mesh 90 μm	
A16 Inorganic microfiber	16 µm	P10 Resin impregnated paper _{10 µm}	
A25 Inorganic microfiber		P25 Resin impregnated paper25 μm	
Seals and treatments	_		
A NBR			
			E Kon
			Execution P01 MP Filtri standard

Order number for spare parts

Item:	Q.ty: 1 pc.	Q.ty: 1 pc. (3a ÷ 3b)
Filter series	Filter element	Seal Kit code number NBR
RFEX 160	See order table	02050772

BVA **Hydraulic symbol Materials Axial Pressure Gauge** - Case: Painted Steel Ordering code BV A 25 P01 - Window: Transparent plastic Settings 2.5 bar ±10% - Dial: Painted Steel - Pointer: Painted Aluminium - Pressure connection: Brass - Pressure element: Bourdon tube Cu-alloy soft soldered ø 43 Dial scale **Technical data** - Max working pressure: Static: 7 bar BV A 25 P01 A/F 11 Fluctuating: 6 bar Max tightening torque: 3 N·m (on polyamide filter cover) 6.5 N·m (on aluminium filter) Red Yellow EN 10226 - R1/8" 3 Short time: 10 bar From -40 °C to +60 °C - Working temperature: 2.5 - Compatibility with fluids: Mineral oils, Synthetic fluids 15 Green HFA, HFB, HFC according to ISO 2943 Class 2.5 according to EN 13190 - Accuracy: 10 25 - Degree of protection: IP31 according to EN 60529

UFM 041

Mobile filtration unit 34 l/min flow rate

UFM 041 general information

Description

Mobile filtration units

UFM 041 mobile filtration units suitable for filling and refilling of filtered hydraulic fluids and lubrication tanks.

The filter unit connected to off-line to the tank (recommended maximum volume of 350/500 L.), can be used as a support to the filtration plant on start-up for fast flushing action, either as additional filtration systems with a high incidence of contamination.

Continued use is recommended for the version with three phase electric motor.

> Features & Benefits

- Compact size
- Light
- Easy to use
- Easy maintenance
- Reliable
- Absolute filtration

GENERAL INFORMATION UFM 041

Technical data

Pump

Gear pump

Electric Motor

0.75 kW 230 V single phase electric motor 0.75 kW 400/230 V three phase electric motor

Flow (I/min)

34 l/min - 1450 r.p.m.

Max. Operation Pressure

5.0 bar

Viscosity range

Min. operation 10 cSt Max. operation 200 cSt

Max. only for cold start 800 cSt

Suction Filter

Type Y filtration 350 μm

Filtration Rating

1, 3, 6, 10, 25 μ m β >1000 flow through the element In/Out

Bypass valve Δp set

Rating 3 bar

Fluid Temperature

From -10 °C to +80 °C

Ambient Temperature

From -20 °C to +45 °C

Protection Class

IP55

Seal

NBR

Fluid Compatibility

Mineral Oil & Synthetic Oil - Other on request

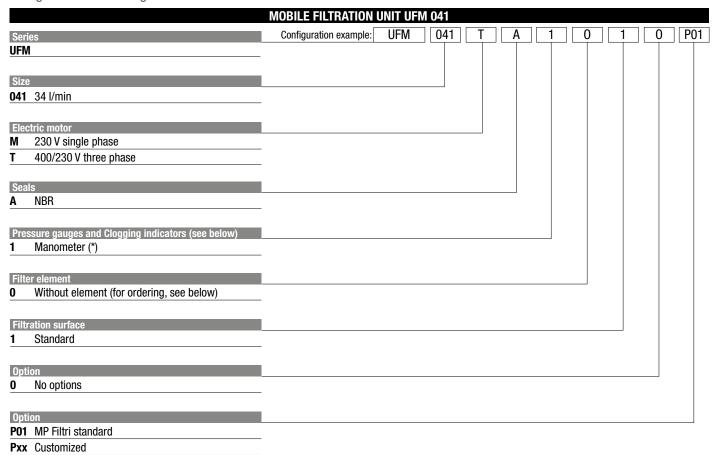
Suction hose lance

DN25 length 3000 mm DN/OD25 length 700 mm

Pressure hose lance

DN20 length 3000 mm DN/OD20 length 700 mm

Weight

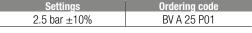

45 kg

Equipment

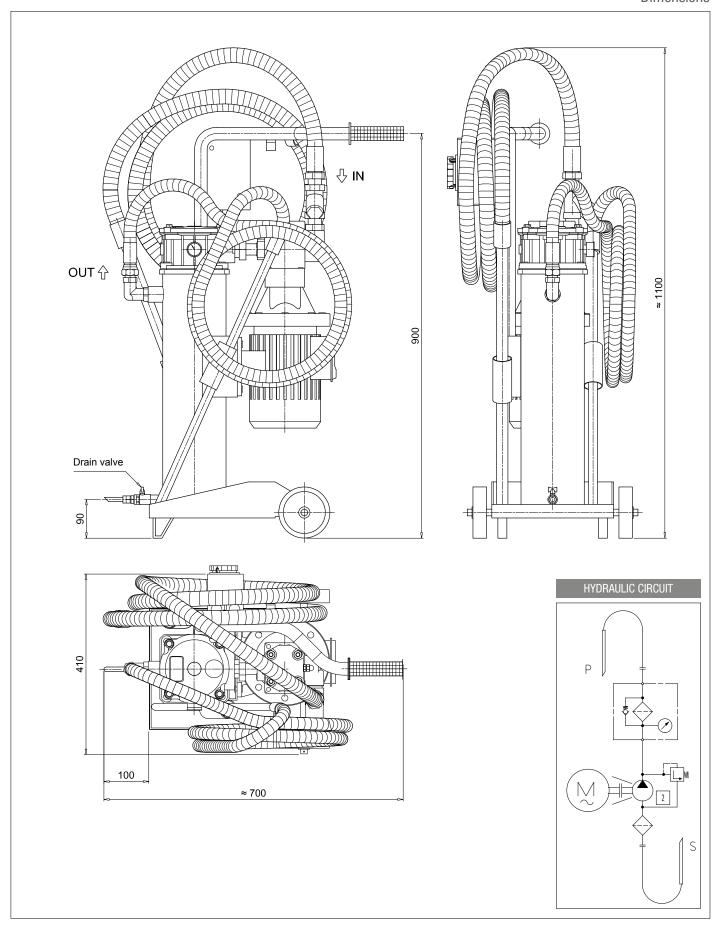
Visual clogging indicator (gauge)

C € Standard

Designation & Ordering code



Filtration element should be ordered separately


FILTRATION SURFACE - STANDARD		
Inorganic microfibre	Wire mesh element	
MR 250 4 A01 A P01	MR 250 4 M25 A P01	
MR 250 4 A03 A P01	MR 250 4 M60 A P01	
MR 250 4 A06 A P01		
MR 250 4 A10 A P01		
MR 250 4 A16 A P01		
MR 250 4 A25 A P01		

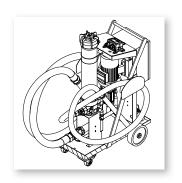
WATER REMOVAL
Multi-Layer water absorber
MR2504WA025AP01

	CLOGGING IN	DICATORS (*)
BVA	Axial pressure gauge	
	0 11:	21:

UFM 051

Mobile filtration unit 50 l/min flow rate

UFM 051 general information


Description

Mobile filtration units

UFM 051 mobile filtration units suitable for filling and refilling of filtered hydraulic fluids and lubrication tanks.

The filter unit connected to off-line to the tank (recommended maximum volume of 500/750 L.), can be used as a support to the filtration plant on start-up for fast flushing action, either as additional filtration systems with a high incidence of contamination.

Continued use is recommended for the version with three phase electric motor.

> Features & Benefits

- Compact size
- Continue Operation Pressure 10 bar
- Easy to use
- Easy maintenance
- Reliable
- Absolute filtration
- In-line Contamination Monitor

Available in three configurations:

- configuration with start / stop differential pressure indicator - visual

- configuration with start / stop automatic motor

- cut-out from differential pressure indicator - electrical / visual

- configuration with start / stop phase inverter automatic motor

- cut-out from differential pressure indicator - electrical / visual

- in-line Particle Counter ICM

GENERAL INFORMATION UFM 051

Technical data

Pump

Gear pump

Electric Motor

1.5 kW 230 V single phase electric motor

1.5 kW 400/230 V three phase electric motor with ICM 2.0

Flow (I/min)

50 l/min - 1450 r.p.m.

Max. Operation Pressure

10 bar

Viscosity range

Min. operation 10 cSt

Max. operation 300 cSt

Max. only for cold start 800 cSt

Suction Filter

Type Y filtration 800 µm

Filtration Rating

1, 3, 6, 10, 25 μ m β >1000 flow through the element Out/In

Bypass valve Δp set

Rating 3.5 bar

The bypass can be blocked through the spigot

Fluid Temperature

From -10 °C to +80 °C

Ambient Temperature

From -20 °C to +45 °C

Protection Class

IP55

Fluid Compatibility

Mineral Oil & Synthetic Oil - Other on request

Suction hose lance

DN32 length 3000 mm DN/OD42 length 700 mm

Pressure hose lance

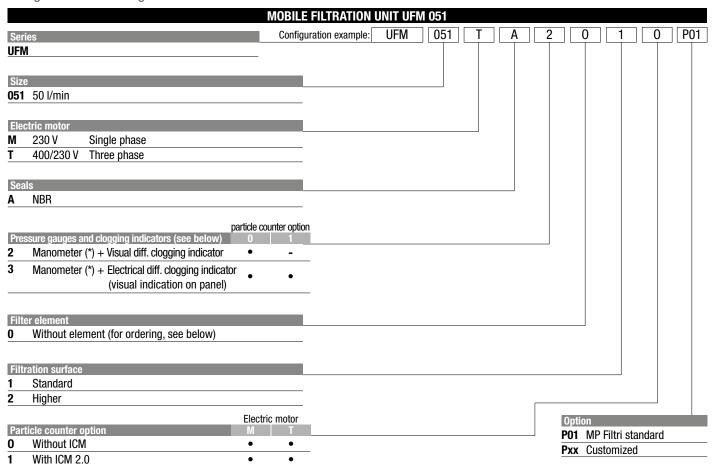
DN25 length 3000 mm DN/OD30 length 700 mm

Weight

70 kg

Equipment

- Differential Clogging indicator - Visual (setting 3.0 bar $\pm 10\%$


- Differential Clogging indicator - Electrical / Visual (setting 3.0 bar ±10%)

- Differential Clogging indicator - Electrical / Visual - with ICM 2.0 (setting 3.0 bar $\pm 10\%$)

C € Standard

Designation & Ordering code

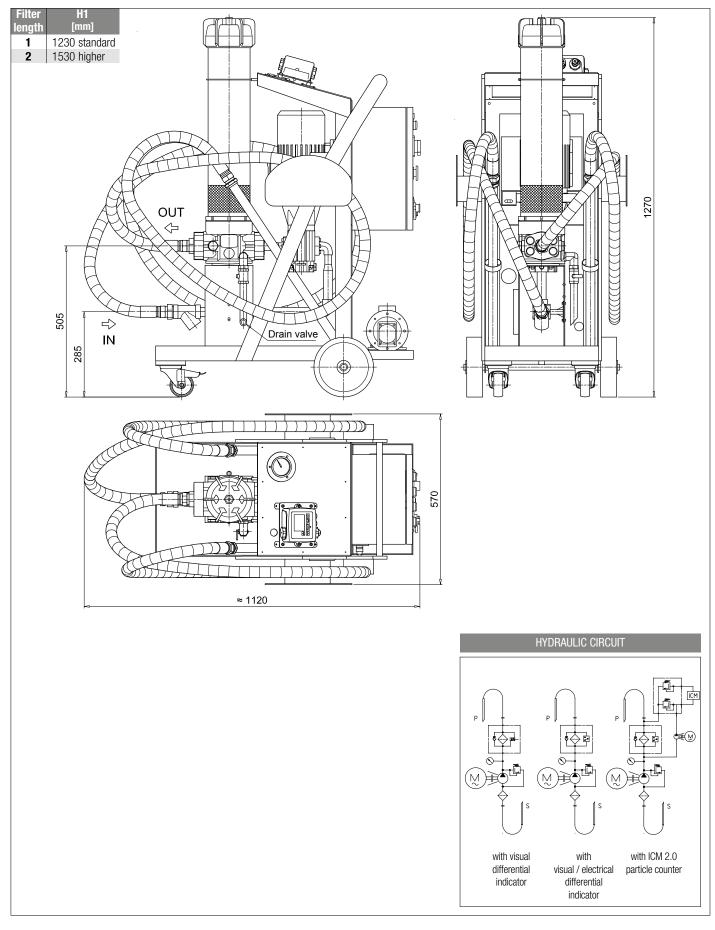
Filtration element should be ordered separately

CE 1 - STANDARD	WATER REMOVAL
Wire mesh element	Multi-Layer water absorber
CU 400 5 M25 A N P01	CU4005WA025ANP01
CU 400 5 M60 A N P01	
	Wire mesh element CU 400 5 M25 A N P01

FILTRATION SURFACE 2 - HIGHER		WATER REMOVAL
Inorganic microfibre	Wire mesh element	Multi-Layer water absorber
CU 400 6 A01 A N P01	CU 400 6 M25 A N P01	CU4006WA025ANP01
CU 400 6 A03 A N P01	CU 400 6 M60 A N P01	
CU 400 6 A06 A N P01		
CU 400 6 A10 A N P01		
CU 400 6 A16 A N P01		

CLOGGING INDICATORS (*)

DVM Visual Differential Indicator


CU 400 6 A25 A N P01

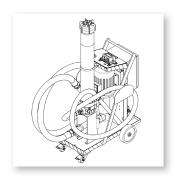
DEA Electrical Differential Indicator (visual indication on panel)

Settings	Ordering code
3.0 bar ±10%	DV M 30 P01

Settings	Ordering code
3.0 bar ±10%	DE A 30 P01

UFM 091

Mobile filtration unit 90 I/min flow rate


UFM 091 general information

Description

Mobile filtration units

UFM 091 mobile filtration units suitable for filling and refilling of filtered hydraulic fluids and lubrication tanks.

The filter unit connected to off-line to the tank, can be used as a support to the filtration plant on start-up for fast flushing action, either as additional filtration systems with a high incidence of contamination. Recommended maximum tank volume of 1500/1800L.

> Features & Benefits

- Compact size
- High flow
- Continue Operation Pressure 10 bar
- Easy to use
- Easy maintenance
- Reliable
- Absolute filtration
- In-line Contamination Monitor

Available in three configurations:

- configuration with start / stop differential pressure indicator - visual

- configuration with start / stop automatic motor

- cut-out from differential pressure indicator - electrical / visual

- configuration with start / stop phase inverter automatic motor

- cut-out from differential pressure indicator - electrical / visual

- in-line Particle Counter ICM

GENERAL INFORMATION UFM 091

Technical data

Pump

Screw pump

Electric Motor

2.2 kW 400/230V three phase 4-pole

Flow (I/min)

90 l/min - 1450 r.p.m.

Max. Operation Pressure

10 bar

Viscosity range

Min. operation 10 cSt Max. operation 800 cSt

Max. only for cold start 2000 cSt

Suction Filter

Type Y filtration 800 µm

Filtration Rating

1, 3, 6, 10, 25 μm $B\!\!>\!\!1000$ flow through the element Out/In

Bypass valve Δp set

Rating 3.5 bar with bypass.

The bypass can be blocked through the spigot

Fluid Temperature

From -10 °C to +80 °C

Ambient Temperature

From -20 °C to +45 °C

Protection Class

IP55

Seal

NBR

Fluid Compatibility

Mineral Oil & Synthetic Oil - Water Glycol

Suction hose lance

DN50 length 3000 mm DN/OD50 length 700 mm

Pressure hose lance

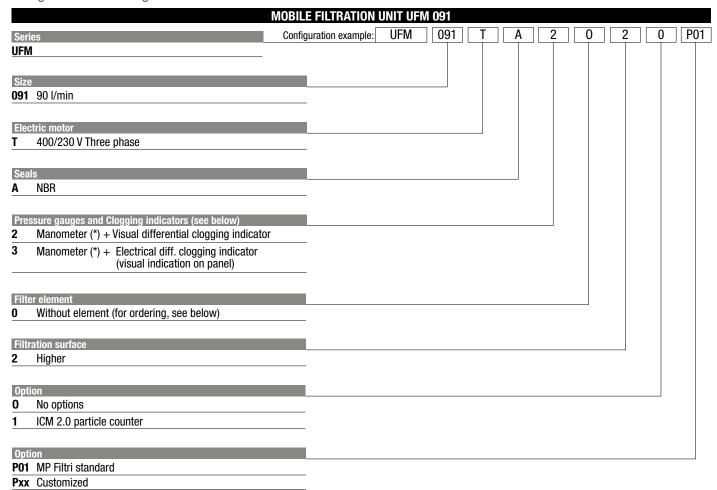
DN38 length 3000 mm DN/OD42 length 700 mm

Weight

105 kg

Equipment

- Differential Clogging indicator - Visual (setting 3.0 bar $\pm 10\%$)


- Differential Clogging indicator - Electrical / Visual (setting 3.0 bar ±10%)

- Differential Clogging indicator - Electrical / Visual - with ICM 2.0 (setting 3.0 bar ±10%)

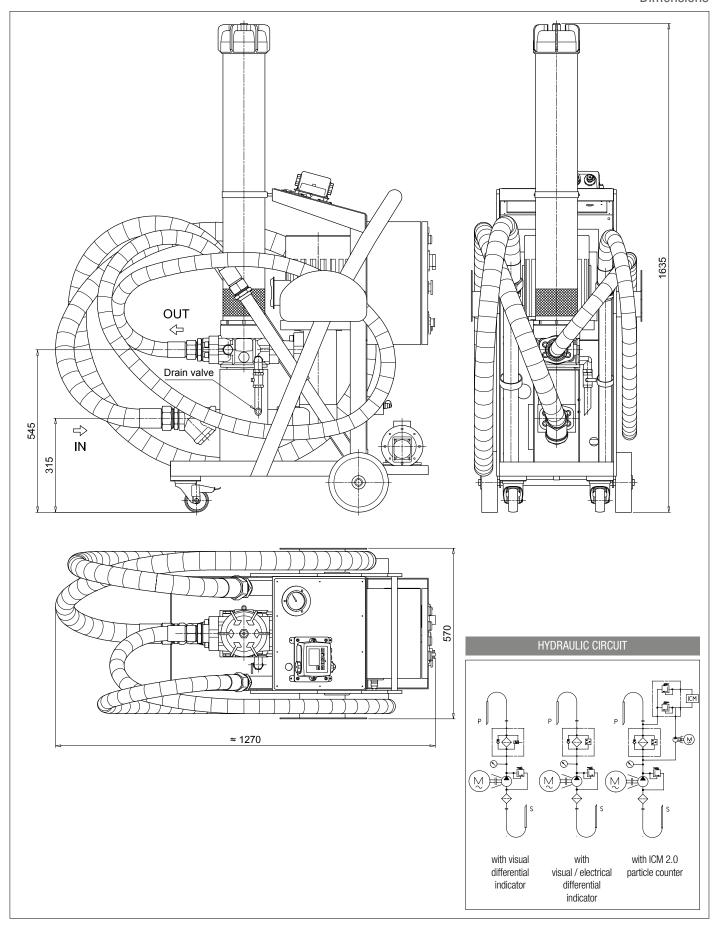
C € Standard

Designation & Ordering code

Filtration element should be ordered separately

FILTRATION SURFACE - HIGHER		
Inorganic microfibre	Wire mesh element	
CU 400 6 A01 A N P01	CU 400 6 M25 A N P01	
CU 400 6 A03 A N P01	CU 400 6 M60 A N P01	
CU 400 6 A06 A N P01		
CU 400 6 A10 A N P01		
CU 400 6 A16 A N P01		
CU 400 6 A25 A N P01		

WATER REMOVAL
Multi-Layer water absorber
CU4006WA025ANP01


CLOGGING INDICATORS (*)

DVM Visual Differential Indicator

DEA Electrical Differential Indicator (visual indication on panel)

Settings	Ordering code
3.0 bar ±10%	DV M 30 P01

Settings	Ordering code
3.0 bar ±10%	DE A 30 P01

UFM 181

Mobile filtration unit 180 l/min flow rate


UFM 181 GENERAL INFORMATION

Description

Mobile filtration units

UFM 181 mobile filtration units suitable for filling and refilling of filtered hydraulic fluids and lubrication tanks.

The filter unit connected to off-line to the tank, can be used as a support to the filtration plant on start-up for fast flushing action, either as additional filtration systems with a high incidence of contamination. Recommended maximum tank volume of 1800/2700 L.

> Features & Benefits

- Compact size
- High flow
- Continue Operation Pressure 10 bar
- Easy to use
- Easy maintenance
- Reliable
- Absolute filtration
- In-line Contamination Monitor

Available in two configurations:

- configuration with start / stop automatic motor
- cut-out from differential pressure indicator electrical / visual
- configuration with start / stop phase inverter automatic motor
- cut-out from differential pressure indicator electrical / visual
- in-line Particle Counter ICM

Technical data

Pump

Screw pump

Electric Motor

4 kW 400/230V three phase 2-pole

Flow (I/min)

180 l/min - 2900 r.p.m.

Max. Operation Pressure

10 bar

Viscosity range

Min. operation 10 cSt Max. operation 800 cSt

Max. only for cold start 2000 cSt

Suction Filter

Type Y filtration 800 µm

Filtration Rating

1, 3, 6, 10, 25 μm $B\!\!>\!\!1000$ flow through the element Out/In

Bypass valve Δp set

Rating 3.5 bar with bypass.

The bypass can be blocked through the spigot

Fluid Temperature

From -10 °C to +80 °C

Ambient Temperature

From -20 °C to +45 °C

Protection Class

IP55

Seal

NBR

Fluid Compatibility

Mineral Oil & Synthetic Oil - Water Glycol

Suction hose lance

DN50 length 3000 mm DN/OD50 length 700 mm

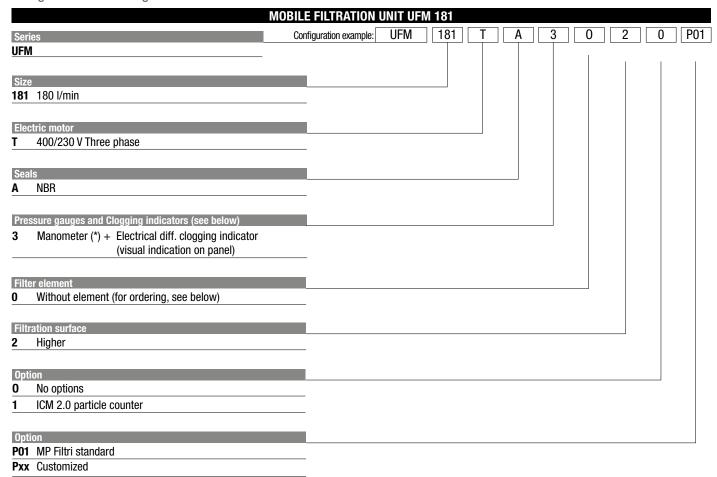
Pressure hose lance

DN38 length 3000 mm DN/OD42 length 700 mm

Weight

109 kg

Equipment

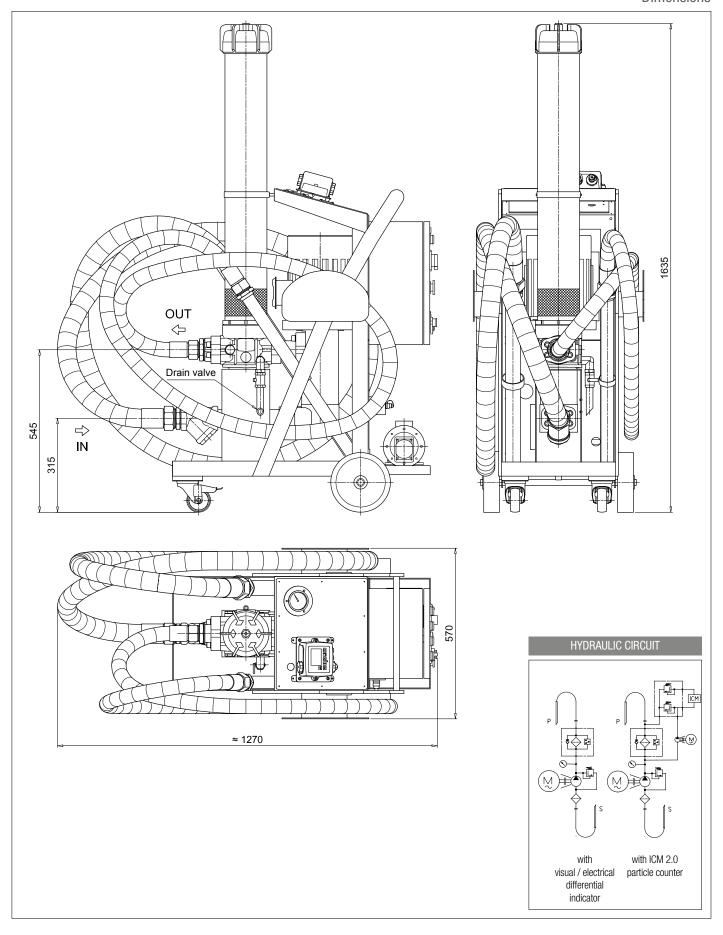

- Differential Clogging indicator - Electrical / Visual (setting 3.0 bar $\pm 10\%$)

- Differential Clogging indicator - Electrical / Visual - with ICM 2.0 (setting 3.0 bar $\pm 10\%$)

C € Standard

Designation & Ordering code

Filtration element should be ordered separately


FILTRATION SURFACE - HIGHER		
Inorganic microfibre	Wire mesh element	
CU 400 6 A01 A N P01	CU 400 6 M25 A N P01	
CU 400 6 A03 A N P01	CU 400 6 M60 A N P01	
CU 400 6 A06 A N P01		
CU 400 6 A10 A N P01		
CU 400 6 A16 A N P01		
CU 400 6 A25 A N P01		

WATER REMOVAL	
Multi-Layer water absorber	
CU4006WA025ANP01	

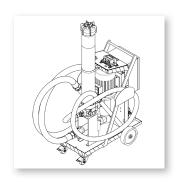
CLOGGING INDICATORS (*)

DEA Electrical Differential Indicator (visual indication on panel)

Settings	Ordering code
3.0 bar ±10%	DE A 30 P01

UFM 919

Mobile filtration unit 90/180 I/min flow rate


UFM 919 GENERAL INFORMATION

Description

Mobile filtration units

UFM 919 mobile filtration units suitable for filling and refilling of filtered hydraulic fluids and lubrication tanks.

The filter unit connected to off-line to the tank, can be used as a support to the filtration plant on start-up for fast flushing action, either as additional filtration systems with a high incidence of contamination. Two-speed electric motor with programmable flow of 90 or 180 l/min.

> Features & Benefits

- Compact size
- High flow
- Continue Operation Pressure 10 bar
- Easy to use
- Easy maintenance
- Reliable
- Absolute filtration
- In-line Contamination Monitor

Possible applications

- Flow rate 90 l/min for filling or topping up tanks with a volume of less than 1000 liters
- Flow rate 90 l/min for depollution of tanks with a volume of less than 1000 liters
- Flow rate 90 I / min for the treatment of high viscosity oils
- Flow rate 90 I / min for a cold start phase then flow rate 180 I/min after temperature rise.

- Flow rate 180 I/min for filling or topping up tanks with a volume greater than 2000 liters
- Flow rate 180 I/min for the depollution of tanks with a volume of less than 2000 liters

Available in two configurations:

- configuration with start / stop automatic motor
- cut-out from differential pressure indicator electrical / visual
- configuration with start / stop phase inverter automatic motor cut-out from differential pressure indicator electrical / visual
- in-line Particle Counter ICM 2.0

GENERAL INFORMATION UFM 919

Technical data

Pump

Screw pump

Electric Motor

3.7/5 kW 400/230V three phase 2/4-pole

Flow (I/min)

90 l/min - 1450 r.p.m. / 180 l/min - 2900 r.p.m.

Max. Operation Pressure

10 bar

Viscosity range

Min. operation 10 cSt Max. operation 800 cSt

Max. only for cold start 2000 cSt

Suction Filter

Type Y filtration 800 µm

Filtration Rating

1, 3, 6, 10, 25 μm $B\!\!>\!\!1000$ flow through the element Out/In

Bypass valve Δp set

Rating 3.5 bar with bypass.

The bypass can be blocked through the spigot

Fluid Temperature

From -10 °C to +80 °C

Ambient Temperature

From -20 °C to +45 °C

Protection Class

IP55

Seal

NBR

Fluid Compatibility

Mineral Oil & Synthetic Oil - Water Glycol

Suction hose lance 90°

DN50 length 3000 mm DN/0D50 length 700 mm DN/0D40 length 700 mm

Pressure hose lance

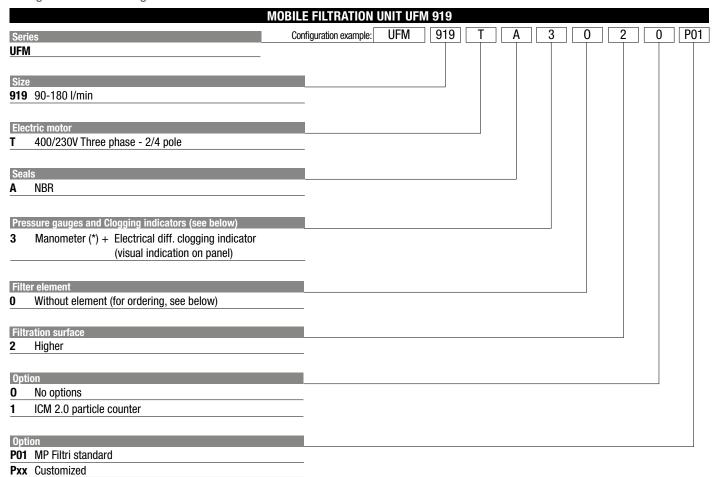
DN38 length 3000 mm DN/OD42 length 700 mm

Weight

120 kg

Equipment

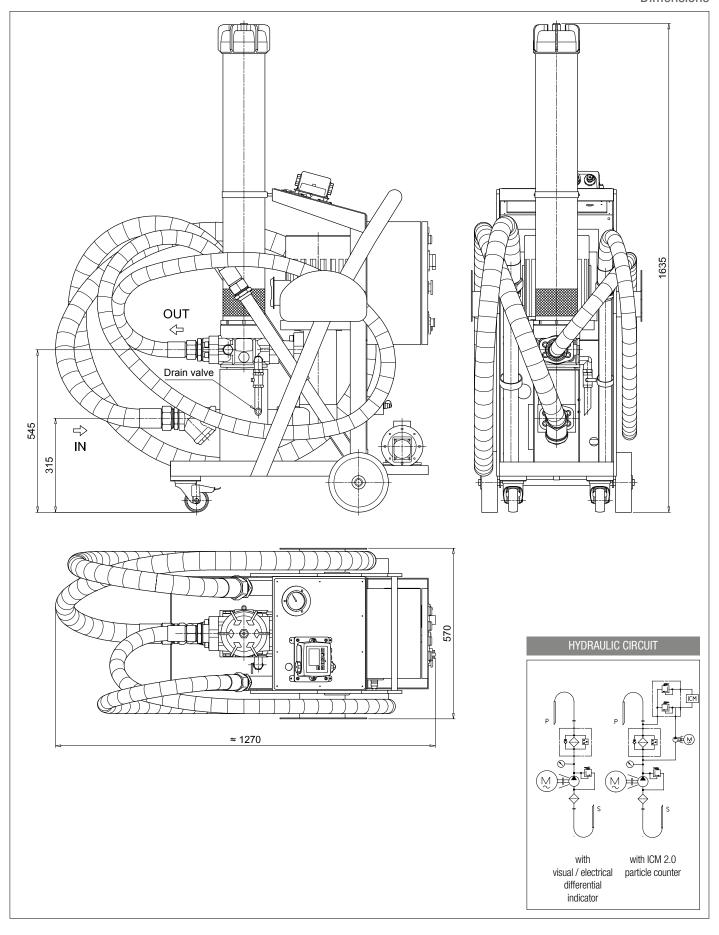
- Differential Clogging indicator - Electrical / Visual (setting 3.0 bar $\pm 10\%$)


- Differential Clogging indicator - Electrical / Visual - with ICM 2.0 (setting 3.0 bar $\pm 10\%$)

C € standard

Designation & Ordering code

Filtration element should be ordered separately


FILTRATION SURFACE - HIGHER		WATER REMOVAL
Inorganic microfibre	Wire mesh element	Multi-Layer water absorber
CU 400 6 A01 A N P01	CU 400 6 M25 A N P01	CU4006WA025ANP01
CU 400 6 A03 A N P01	CU 400 6 M60 A N P01	
CU 400 6 A06 A N P01		
CU 400 6 A10 A N P01		
CU 400 6 A16 A N P01		
CU 400 6 A25 A N P01		

CLOGGING INDICATORS (*)

DEA Electrical Differential Indicator (visual indication on panel)

Settings	Ordering code
3.0 bar ±10%	DE A 30 P01

FTU 080

Fluid transfer unit with ICM 2.0 (In-line Contamination Monitor)

FTU 080 general information

Description

Fluid Transfer Unit

FTU 080 Fluid Transfer unit suitable for filling, recirculation - via onboard 80L reservoir - and emptying of filtered hydraulic fluids and lubrication tanks.

The FTU can be utilised either as additional filtration to a system with a high incidence of contamination, or can be used as a standalone recirculating filtration circuit to clean fluid to a predetermined contamination level - monitored by the onboard ICM - prior to transfer of fluid to the system.

> Features & Benefits

- Compact size
- Easy to use
- Easy maintenance
- Reliable
- Absolute filtration
- In-line Contamination Monitor

Possible applications

- Low flow rate for filling of reservoirs
- Low-flow filtration for off-line tanks
- Pre filtration ability of fluid prior to filling of hydraulic system

Technical data

Pump

Gear pump

Electric Motor

0.75 kW 1400 rpm, 110/230 V single phase

Flow (I/min)

15 l/min

Max. Operation Pressure

3.5 bar

Inlet

Inlet (pump protection) filtration steel 250 µm strainer

Viscosity

150 cSt maximum fluid viscosity

Suction Filter

250 µm metal mesh strainers

Bypass valve Δp set

Rating 3.5 bar with bypass

Filtration

Water removal "spin-on" type, bypass set at 1.75 bar.

In-line filtration 3 μ m absolute β 1000 element bypass set at 3.0 bar.

Filtration rating

See designation order for cartridge and filter elements

Control

Electrical Control Box

Indicator

Delivery line electric cut out switch

Ambient Temperature

From -10 °C to 80 °C

Working temperature

From 0 °C to 40 °C

Protection Class

IP55

Seal

NBR

Fluid Compatibility

Mineral oil compatible - please contact sales team for queries about other

fluids

Hoses

Flexible hoses - SAE100R4 1" BSP swaged females 2mtr long hose

Oil level

Sight glass and filler with integrated electric float cut out switch

Weight

200 kg

Mounting

Heavy duty trolley and wheels

C € Standard

Designation & Ordering code

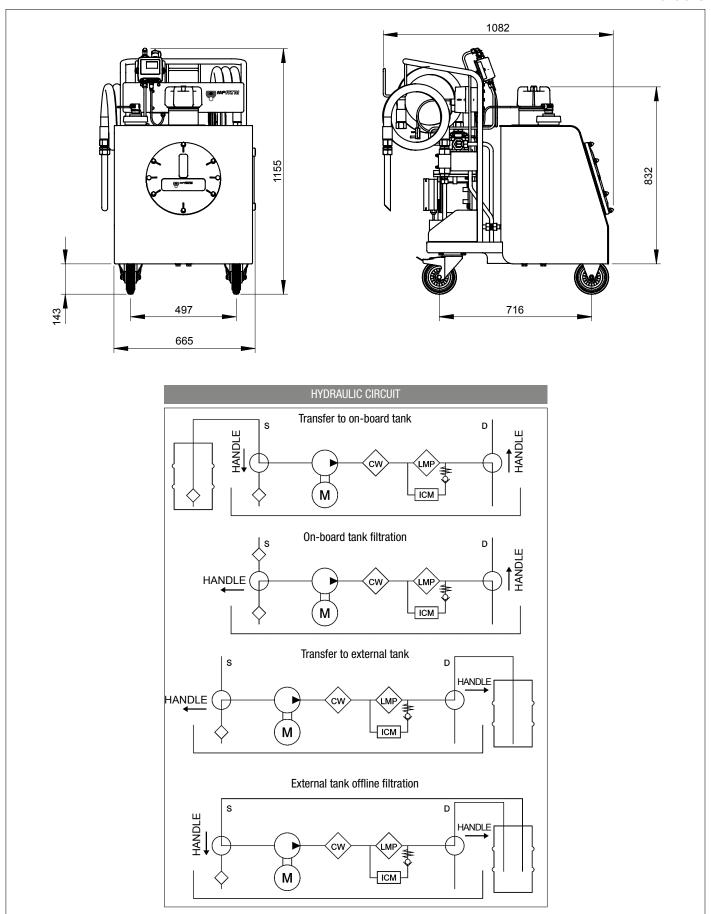
		FLUID TRANS	SFER UNIT	r f TU								
Mobile	filtration unit	Configuratio	n example:	FTU	1	1	15	2	1	M250	SL4	305
FTU	Fluid Transfer Unit	-	•							\Box		
Onhoo	rd reservoir											
1	80 litres											
In-line	contamination monitor											
1	With ICM	_										
Flow ra	ate											
15	15 l/min	_										
Motor		I										
2	0.75 kW, 1400 rpm	_										
Vage		I										
1	110 V - 50 Hz single phase	_										
2	240 V - 50 Hz single phase	_										
Inlet fi	Itration											
M250	250 μm suction strainer (internal of reservoir)		_									
	filtration											
SL430	5 Single spin on plus LMP length 5											

Filtration element is not included and should be ordered separately.

Outlet filtration options: LMP: CU400 5 A03, A06, A10, A16, A25 - SPIN-ON: CS150 A03, A06, A10, A25 - CS150 P10, P25 - WATER REMOVAL: CW150 P10, P25

CARTRIDGE STANDARD LENGTH						
Inorganic microfibre	Wire mesh element					
CS 100 A01 A P01	CS 100 M25 A P01					
CS 100 A03 A P01	CS 100 M60 A P01					
CS 100 A06 A P01						
CS 100 A10 A P01						
CS 100 A25 A P01						

CARTRIDGE EXTENDED LENGTH						
Inorganic microfibre	Wire mesh element					
CS 150 A01 A P01	CS 150 M25 A P01					
CS 150 A03 A P01	CS 150 M60 A P01					
CS 150 A06 A P01						
CS 150 A10 A P01						
CS 150 A25 A P01						


LMP FILTER ELEMENT - LENGTH 5						
Inorganic microfibre						
CU 400 5 A03 A N P01						
CU 400 5 A10 A N P01						
CU 400 5 A16 A N P01						
CU 400 5 A25 A N P01						

WATER REMOVAL	- CARTRINGE E	XTENDED LENGTH
WAIEN NEWOVA	- CANTHIUGE E	A LEMPIED LEMBIN

Multi-Layer water absorber CW150P10A

Dimensions

148

All data, details and words contained in this publication are provided for use by technically qualified personnel at their discretion, without warranty of any kind.

MP Filtri reserves the right to make modifications to the models and versions of the described products at any time for both technical and/or commercial reasons.

For updated information please visit our website: www.mpfiltri.com

The colors and the pictures of the products are purely indicative.

Any reproduction, partial or total, of this document is strictly forbidden.

All rights are strictly reserved

WORLDWIDE NETWORK

CANADA CHINA FRANCE GERMANY INDIA RUSSIAN FEDERATION SINGAPORE UNITED ARAB EMIRATES UNITED KINGDOM USA

PASSION TO PERFORM

